某些二维几何域上线性代数群的算术

Jean-Louis Colliot-Thélène , Philippe Gille , Raman Parimala
{"title":"某些二维几何域上线性代数群的算术","authors":"Jean-Louis Colliot-Thélène ,&nbsp;Philippe Gille ,&nbsp;Raman Parimala","doi":"10.1016/S0764-4442(01)02123-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>k</em> be an algebraically closed field of characteristic zero. Let <em>K</em> be either a function field in two variables over <em>k</em> or the fraction field of a 2-dimensional, excellent, strictly henselian local domain with residue field <em>k</em>. We show that linear algebraic groups over such a field <em>K</em> satisfy most properties familiar in the context of number fields: finiteness of <em>R</em>-equivalence, Hasse principle for complete homogeneous spaces.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 9","pages":"Pages 827-832"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02123-1","citationCount":"6","resultStr":"{\"title\":\"Arithmétique des groupes algébriques linéaires sur certains corps géométriques de dimension deux\",\"authors\":\"Jean-Louis Colliot-Thélène ,&nbsp;Philippe Gille ,&nbsp;Raman Parimala\",\"doi\":\"10.1016/S0764-4442(01)02123-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>k</em> be an algebraically closed field of characteristic zero. Let <em>K</em> be either a function field in two variables over <em>k</em> or the fraction field of a 2-dimensional, excellent, strictly henselian local domain with residue field <em>k</em>. We show that linear algebraic groups over such a field <em>K</em> satisfy most properties familiar in the context of number fields: finiteness of <em>R</em>-equivalence, Hasse principle for complete homogeneous spaces.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 9\",\"pages\":\"Pages 827-832\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02123-1\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

设k为特征为0的代数闭域。设K是在K上的两个变量的函数域,或者是一个具有剩余域K的二维、优秀的、严格亨塞利局部域的分数域。我们证明了在这样一个域K上的线性代数群满足数域中所熟悉的大多数性质:r等价的有限性,完全齐次空间的Hasse原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmétique des groupes algébriques linéaires sur certains corps géométriques de dimension deux

Let k be an algebraically closed field of characteristic zero. Let K be either a function field in two variables over k or the fraction field of a 2-dimensional, excellent, strictly henselian local domain with residue field k. We show that linear algebraic groups over such a field K satisfy most properties familiar in the context of number fields: finiteness of R-equivalence, Hasse principle for complete homogeneous spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信