有限变分过程Banach空间上lsamvy过程的最优一致逼近

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Rafal Marcin Lochowski, Witold Marek Bednorz, Rafał Martynek
{"title":"有限变分过程Banach空间上lsamvy过程的最优一致逼近","authors":"Rafal Marcin Lochowski, Witold Marek Bednorz, Rafał Martynek","doi":"10.1051/ps/2022011","DOIUrl":null,"url":null,"abstract":"For a general \\cad Lévy process $X$ on a separable Banach\nspace $V$ we estimate values of $\\inf_{c\\ge0} \\cbr{ \\psi(c)+ \\inf_{Y\\in{\\cal A}_{X}(c)}\\E \\TTV Y{\\left[0,T\\right]}{}}$,\nwhere ${\\cal A}_{X}(c)$ is the family of processes on $V$ adapted to\nthe natural filtration of $X$,  a.s. approximating paths of $X$ uniformly with accuracy $c$, $\\psi$ is a penalty function with polynomial growth and\n$\\TTV Y{\\left[0,T\\right]}{}$ denotes the total variation of the process\n$Y$ on the interval $[0,T]$. Next, we apply obtained estimates in\nthree specific cases: Brownian motion with drift on $\\R$, standard\nBrownian motion on $\\R^{d}$ and a symmetric $\\alpha$-stable process\n($\\alpha\\in(1,2)$) on $\\R$.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"16 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On optimal uniform approximation of Lévy processes on Banach spaces with finite variation processes\",\"authors\":\"Rafal Marcin Lochowski, Witold Marek Bednorz, Rafał Martynek\",\"doi\":\"10.1051/ps/2022011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a general \\\\cad Lévy process $X$ on a separable Banach\\nspace $V$ we estimate values of $\\\\inf_{c\\\\ge0} \\\\cbr{ \\\\psi(c)+ \\\\inf_{Y\\\\in{\\\\cal A}_{X}(c)}\\\\E \\\\TTV Y{\\\\left[0,T\\\\right]}{}}$,\\nwhere ${\\\\cal A}_{X}(c)$ is the family of processes on $V$ adapted to\\nthe natural filtration of $X$,  a.s. approximating paths of $X$ uniformly with accuracy $c$, $\\\\psi$ is a penalty function with polynomial growth and\\n$\\\\TTV Y{\\\\left[0,T\\\\right]}{}$ denotes the total variation of the process\\n$Y$ on the interval $[0,T]$. Next, we apply obtained estimates in\\nthree specific cases: Brownian motion with drift on $\\\\R$, standard\\nBrownian motion on $\\\\R^{d}$ and a symmetric $\\\\alpha$-stable process\\n($\\\\alpha\\\\in(1,2)$) on $\\\\R$.\",\"PeriodicalId\":51249,\"journal\":{\"name\":\"Esaim-Probability and Statistics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Probability and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2022011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2022011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

对于可分Banachspace $V$上的一个一般的\cad l过程$X$,我们估计了$\inf_{c\ge0} \cbr{ \psi(c)+ \inf_{Y\in{\cal A}_{X}(c)}\E \TTV Y{\left[0,T\right]}{}}$的值,其中${\cal A}_{X}(c)$是$V$上适应$X$自然过滤的进程族,即以$c$的精度均匀逼近$X$的路径。$\psi$是一个多项式增长的惩罚函数,$\TTV Y{\left[0,T\right]}{}$表示过程$Y$在区间$[0,T]$上的总变化。接下来,我们将得到的估计应用于三种具体情况:$\R$上有漂移的布朗运动,$\R^{d}$上的标准布朗运动和$\R$上的对称$\alpha$ -稳定过程($\alpha\in(1,2)$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On optimal uniform approximation of Lévy processes on Banach spaces with finite variation processes
For a general \cad Lévy process $X$ on a separable Banach space $V$ we estimate values of $\inf_{c\ge0} \cbr{ \psi(c)+ \inf_{Y\in{\cal A}_{X}(c)}\E \TTV Y{\left[0,T\right]}{}}$, where ${\cal A}_{X}(c)$ is the family of processes on $V$ adapted to the natural filtration of $X$,  a.s. approximating paths of $X$ uniformly with accuracy $c$, $\psi$ is a penalty function with polynomial growth and $\TTV Y{\left[0,T\right]}{}$ denotes the total variation of the process $Y$ on the interval $[0,T]$. Next, we apply obtained estimates in three specific cases: Brownian motion with drift on $\R$, standard Brownian motion on $\R^{d}$ and a symmetric $\alpha$-stable process ($\alpha\in(1,2)$) on $\R$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Esaim-Probability and Statistics
Esaim-Probability and Statistics STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains. Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics. Long papers are very welcome. Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信