两个拟Lindley分布的和与差:理论与应用

Yasser M. Amer, D. Hady, R. Shalabi
{"title":"两个拟Lindley分布的和与差:理论与应用","authors":"Yasser M. Amer, D. Hady, R. Shalabi","doi":"10.12691/AJAMS-9-1-3","DOIUrl":null,"url":null,"abstract":"In this paper two basic random variables constructed from Quasi Lindley distribution have been introduced. One of these variables is defined as the sum of two independent random variables following the Quasi-Lindley distribution with the same parameter (2SQLindley). The second one is defined as the difference of two independent random variables following the Quasi-Lindley distribution with also the same parameter (2DQLindley). For both cases, we provided some statistical properties such as moments, incomplete moments and characteristic function. The parameters are estimated by maximum likelihood method. From simulation studies, the performance of the maximum likelihood estimators has been assessed. The usefulness of the corresponding models is proved using goodness-of-fit tests based on different real datasets. The new models provide consistently better fit than some classical models used in this research.","PeriodicalId":91196,"journal":{"name":"American journal of applied mathematics and statistics","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a Sum and Difference of Two Quasi Lindley Distributions: Theory and Applications\",\"authors\":\"Yasser M. Amer, D. Hady, R. Shalabi\",\"doi\":\"10.12691/AJAMS-9-1-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper two basic random variables constructed from Quasi Lindley distribution have been introduced. One of these variables is defined as the sum of two independent random variables following the Quasi-Lindley distribution with the same parameter (2SQLindley). The second one is defined as the difference of two independent random variables following the Quasi-Lindley distribution with also the same parameter (2DQLindley). For both cases, we provided some statistical properties such as moments, incomplete moments and characteristic function. The parameters are estimated by maximum likelihood method. From simulation studies, the performance of the maximum likelihood estimators has been assessed. The usefulness of the corresponding models is proved using goodness-of-fit tests based on different real datasets. The new models provide consistently better fit than some classical models used in this research.\",\"PeriodicalId\":91196,\"journal\":{\"name\":\"American journal of applied mathematics and statistics\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of applied mathematics and statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12691/AJAMS-9-1-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of applied mathematics and statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/AJAMS-9-1-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了由拟林德利分布构造的两个基本随机变量。其中一个变量定义为具有相同参数(2SQLindley)的服从拟林德利分布的两个独立随机变量的和。第二个定义为两个独立随机变量的差值,它们遵循同样参数的拟林德利分布(2DQLindley)。对于这两种情况,我们给出了一些统计性质,如矩、不完全矩和特征函数。采用极大似然法对参数进行估计。通过仿真研究,对极大似然估计器的性能进行了评价。通过不同实际数据集的拟合优度检验,证明了相应模型的有效性。新模型比本研究中使用的一些经典模型始终提供更好的拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Sum and Difference of Two Quasi Lindley Distributions: Theory and Applications
In this paper two basic random variables constructed from Quasi Lindley distribution have been introduced. One of these variables is defined as the sum of two independent random variables following the Quasi-Lindley distribution with the same parameter (2SQLindley). The second one is defined as the difference of two independent random variables following the Quasi-Lindley distribution with also the same parameter (2DQLindley). For both cases, we provided some statistical properties such as moments, incomplete moments and characteristic function. The parameters are estimated by maximum likelihood method. From simulation studies, the performance of the maximum likelihood estimators has been assessed. The usefulness of the corresponding models is proved using goodness-of-fit tests based on different real datasets. The new models provide consistently better fit than some classical models used in this research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信