网络物理数据流中的轻量级基于知识的事件分析

M. Namaki, Xin Zhang, Sukhjinder Singh, Arman Ahmed, Armina Foroutan, Yinghui Wu, A. Srivastava, Anton Kocheturov
{"title":"网络物理数据流中的轻量级基于知识的事件分析","authors":"M. Namaki, Xin Zhang, Sukhjinder Singh, Arman Ahmed, Armina Foroutan, Yinghui Wu, A. Srivastava, Anton Kocheturov","doi":"10.1109/ICDE48307.2020.00165","DOIUrl":null,"url":null,"abstract":"We demonstrate Kronos, a framework and system that automatically extracts highly dynamic knowledge for complex event analysis in Cyber-Physical systems. Kronos captures events with anomaly-based event model, and integrates various events by correlating with their temporal associations in realtime, from heterogeneous, continuous cyber-physical measurement data streams. It maintains a lightweight highly dynamic knowledge base, enabled by online, window-based ensemble learning and incremental association analysis for event detection and linkage, respectively. These algorithms incur time costs determined by available memory, independent of the size of streams. Exploiting the highly dynamic knowledge, Kronos supports a rich set of stream event analytical queries including event search (keywords and query-by-example), provenance queries (\"which measurements or features are responsible for detected events?\"), and root cause analysis. We demonstrate how the GUI of Kronos interacts with users to support both continuous and ad-hoc queries online and enables situational awareness in Cyber-power systems, communication, and traffic networks.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"416 1","pages":"1766-1769"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Kronos: Lightweight Knowledge-based Event Analysis in Cyber-Physical Data Streams\",\"authors\":\"M. Namaki, Xin Zhang, Sukhjinder Singh, Arman Ahmed, Armina Foroutan, Yinghui Wu, A. Srivastava, Anton Kocheturov\",\"doi\":\"10.1109/ICDE48307.2020.00165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate Kronos, a framework and system that automatically extracts highly dynamic knowledge for complex event analysis in Cyber-Physical systems. Kronos captures events with anomaly-based event model, and integrates various events by correlating with their temporal associations in realtime, from heterogeneous, continuous cyber-physical measurement data streams. It maintains a lightweight highly dynamic knowledge base, enabled by online, window-based ensemble learning and incremental association analysis for event detection and linkage, respectively. These algorithms incur time costs determined by available memory, independent of the size of streams. Exploiting the highly dynamic knowledge, Kronos supports a rich set of stream event analytical queries including event search (keywords and query-by-example), provenance queries (\\\"which measurements or features are responsible for detected events?\\\"), and root cause analysis. We demonstrate how the GUI of Kronos interacts with users to support both continuous and ad-hoc queries online and enables situational awareness in Cyber-power systems, communication, and traffic networks.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"416 1\",\"pages\":\"1766-1769\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们展示了Kronos,一个框架和系统,可以自动提取高度动态的知识,用于网络物理系统中的复杂事件分析。Kronos使用基于异常的事件模型捕获事件,并通过实时关联各种事件,从异构的,连续的网络物理测量数据流中集成各种事件。它维护一个轻量级的高度动态的知识库,通过在线的、基于窗口的集成学习和用于事件检测和链接的增量关联分析来实现。这些算法产生的时间开销由可用内存决定,与流的大小无关。利用高度动态的知识,Kronos支持丰富的流事件分析查询,包括事件搜索(关键字和按例查询)、来源查询(“哪些测量或特征负责检测到的事件?”)和根本原因分析。我们演示了Kronos的GUI如何与用户交互,以支持在线的连续查询和临时查询,并在网络动力系统、通信和交通网络中实现态势感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kronos: Lightweight Knowledge-based Event Analysis in Cyber-Physical Data Streams
We demonstrate Kronos, a framework and system that automatically extracts highly dynamic knowledge for complex event analysis in Cyber-Physical systems. Kronos captures events with anomaly-based event model, and integrates various events by correlating with their temporal associations in realtime, from heterogeneous, continuous cyber-physical measurement data streams. It maintains a lightweight highly dynamic knowledge base, enabled by online, window-based ensemble learning and incremental association analysis for event detection and linkage, respectively. These algorithms incur time costs determined by available memory, independent of the size of streams. Exploiting the highly dynamic knowledge, Kronos supports a rich set of stream event analytical queries including event search (keywords and query-by-example), provenance queries ("which measurements or features are responsible for detected events?"), and root cause analysis. We demonstrate how the GUI of Kronos interacts with users to support both continuous and ad-hoc queries online and enables situational awareness in Cyber-power systems, communication, and traffic networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信