五种不同设计的天然气和氢气混合混合器的CFD性能

K. Botros, Mohammad H. Shariati, Swaran Sandhawalia
{"title":"五种不同设计的天然气和氢气混合混合器的CFD性能","authors":"K. Botros, Mohammad H. Shariati, Swaran Sandhawalia","doi":"10.1115/ipc2022-86895","DOIUrl":null,"url":null,"abstract":"\n The aspiration for blending hydrogen (H2) into natural gas (NG) in gas transmission systems is high and is happening globally. However, the mechanics and details of blending the two streams are not well developed or perfected. There is a need to arrive at the best technique and approach to achieve perfect blending to minimize the potential adverse impact on the operation of downstream facilities as well as on the end-users. The challenge is primarily driven by the fact that NG and H2 have vastly different properties, principally densities, that may lead to possible stratification, short circuiting, and pockets of undesirable high concentration of H2 in the blended stream. The paper documents Computational Fluid Dynamics (CFD) simulation results conducted on five different concepts of mixer/blending designs. These mixer designs are: i) single or multiple side entries, ii) dual spiral ribbon (DSR) type mixer, iii) venturi mixer, iv) hybrid mixer of DSR inside a venturi, and v) NC5 perforated tube bundle type mixer. An example of an NPS 12 (DN300) ultrasonic meter run with an NPS 20 (DN500) header was assumed throughout the analysis. It was found that the venturi mixing concept with a single side entry is the optimum design due to its simplicity, cost effectiveness, and relatively low pressure drop. With this simple design, 99% mixing efficiency is achieved within 13D at maximum flow, where D is the main header diameter downstream of the mixing station. The pressure drop coefficient for this design is estimated to be approx. 3.1, which amounts to ∼6 kPa at maximum flow, which is relatively low. However, mixing will halt at coefficient of variance = 0.2 (80% mixing efficiency) at very low flow rate of a turndown ratio of 20:1. Final selection of a mixer design from the five designs investigated depends on the tradeoff between mixing efficiency, pressure drop and cost.","PeriodicalId":21327,"journal":{"name":"Risk Management","volume":"415 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Five Different Natural Gas and Hydrogen Blending Mixer Designs via CFD\",\"authors\":\"K. Botros, Mohammad H. Shariati, Swaran Sandhawalia\",\"doi\":\"10.1115/ipc2022-86895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The aspiration for blending hydrogen (H2) into natural gas (NG) in gas transmission systems is high and is happening globally. However, the mechanics and details of blending the two streams are not well developed or perfected. There is a need to arrive at the best technique and approach to achieve perfect blending to minimize the potential adverse impact on the operation of downstream facilities as well as on the end-users. The challenge is primarily driven by the fact that NG and H2 have vastly different properties, principally densities, that may lead to possible stratification, short circuiting, and pockets of undesirable high concentration of H2 in the blended stream. The paper documents Computational Fluid Dynamics (CFD) simulation results conducted on five different concepts of mixer/blending designs. These mixer designs are: i) single or multiple side entries, ii) dual spiral ribbon (DSR) type mixer, iii) venturi mixer, iv) hybrid mixer of DSR inside a venturi, and v) NC5 perforated tube bundle type mixer. An example of an NPS 12 (DN300) ultrasonic meter run with an NPS 20 (DN500) header was assumed throughout the analysis. It was found that the venturi mixing concept with a single side entry is the optimum design due to its simplicity, cost effectiveness, and relatively low pressure drop. With this simple design, 99% mixing efficiency is achieved within 13D at maximum flow, where D is the main header diameter downstream of the mixing station. The pressure drop coefficient for this design is estimated to be approx. 3.1, which amounts to ∼6 kPa at maximum flow, which is relatively low. However, mixing will halt at coefficient of variance = 0.2 (80% mixing efficiency) at very low flow rate of a turndown ratio of 20:1. Final selection of a mixer design from the five designs investigated depends on the tradeoff between mixing efficiency, pressure drop and cost.\",\"PeriodicalId\":21327,\"journal\":{\"name\":\"Risk Management\",\"volume\":\"415 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ipc2022-86895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipc2022-86895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将氢气(H2)混合到天然气(NG)中用于输气系统的愿望很高,并且正在全球范围内发生。然而,混合两种流的机制和细节还没有很好地发展或完善。有必要采用最佳的技术和方法来实现完美的混合,以尽量减少对下游设施和最终用户操作的潜在不利影响。挑战主要是由于NG和H2具有截然不同的特性,主要是密度,这可能导致混合流中可能出现分层、短路和不希望出现的高浓度H2。本文记录了计算流体动力学(CFD)对五种不同概念的混合器/混合设计的模拟结果。这些混合器设计有:i)单侧或多侧入口,ii)双螺旋带(DSR)型混合器,iii)文丘里混合器,iv)文丘里内DSR混合器,v) NC5穿孔管束型混合器。在整个分析过程中,假设使用NPS 12 (DN300)超声波流量计与NPS 20 (DN500)头一起运行。结果表明,单侧入口文丘里混合器设计简单、成本效益好、压降相对较低,是最佳设计方案。通过这种简单的设计,在最大流量下,在13D内达到99%的混合效率,其中D为搅拌站下游的主集箱直径。这种设计的压降系数估计约为。3.1,最大流量约为~ 6 kPa,相对较低。然而,在非常低的流量为20:1的降压比时,混合将在方差系数= 0.2(80%混合效率)时停止。从所研究的五种设计中最终选择一种混合器设计取决于混合效率、压降和成本之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of Five Different Natural Gas and Hydrogen Blending Mixer Designs via CFD
The aspiration for blending hydrogen (H2) into natural gas (NG) in gas transmission systems is high and is happening globally. However, the mechanics and details of blending the two streams are not well developed or perfected. There is a need to arrive at the best technique and approach to achieve perfect blending to minimize the potential adverse impact on the operation of downstream facilities as well as on the end-users. The challenge is primarily driven by the fact that NG and H2 have vastly different properties, principally densities, that may lead to possible stratification, short circuiting, and pockets of undesirable high concentration of H2 in the blended stream. The paper documents Computational Fluid Dynamics (CFD) simulation results conducted on five different concepts of mixer/blending designs. These mixer designs are: i) single or multiple side entries, ii) dual spiral ribbon (DSR) type mixer, iii) venturi mixer, iv) hybrid mixer of DSR inside a venturi, and v) NC5 perforated tube bundle type mixer. An example of an NPS 12 (DN300) ultrasonic meter run with an NPS 20 (DN500) header was assumed throughout the analysis. It was found that the venturi mixing concept with a single side entry is the optimum design due to its simplicity, cost effectiveness, and relatively low pressure drop. With this simple design, 99% mixing efficiency is achieved within 13D at maximum flow, where D is the main header diameter downstream of the mixing station. The pressure drop coefficient for this design is estimated to be approx. 3.1, which amounts to ∼6 kPa at maximum flow, which is relatively low. However, mixing will halt at coefficient of variance = 0.2 (80% mixing efficiency) at very low flow rate of a turndown ratio of 20:1. Final selection of a mixer design from the five designs investigated depends on the tradeoff between mixing efficiency, pressure drop and cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信