C. Iwendi, Ebuka Ibeke, Harshini Eggoni, Sreerajavenkatareddy Velagala, Gautam Srivastava
{"title":"使用机器学习模型的基于指针的物品到物品协同过滤推荐系统","authors":"C. Iwendi, Ebuka Ibeke, Harshini Eggoni, Sreerajavenkatareddy Velagala, Gautam Srivastava","doi":"10.1142/s0219622021500619","DOIUrl":null,"url":null,"abstract":"The creation of digital marketing has enabled companies to adopt personalized item recommendations for their customers. This process keeps them ahead of the competition. One of the techniques used in item recommendation is known as item-based recommendation system or item–item collaborative filtering. Presently, item recommendation is based completely on ratings like 1–5, which is not included in the comment section. In this context, users or customers express their feelings and thoughts about products or services. This paper proposes a machine learning model system where 0, 2, 4 are used to rate products. 0 is negative, 2 is neutral, 4 is positive. This will be in addition to the existing review system that takes care of the users’ reviews and comments, without disrupting it. We have implemented this model by using Keras, Pandas and Sci-kit Learning libraries to run the internal work. The proposed approach improved prediction with [Formula: see text] accuracy for Yelp datasets of businesses across 11 metropolitan areas in four countries, along with a mean absolute error (MAE) of [Formula: see text], precision at [Formula: see text], recall at [Formula: see text] and F1-Score at [Formula: see text]. Our model shows scalability advantage and how organizations can revolutionize their recommender systems to attract possible customers and increase patronage. Also, the proposed similarity algorithm was compared to conventional algorithms to estimate its performance and accuracy in terms of its root mean square error (RMSE), precision and recall. Results of this experiment indicate that the similarity recommendation algorithm performs better than the conventional algorithm and enhances recommendation accuracy.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"80 1","pages":"463-484"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Pointer-Based Item-to-Item Collaborative Filtering Recommendation System Using a Machine Learning Model\",\"authors\":\"C. Iwendi, Ebuka Ibeke, Harshini Eggoni, Sreerajavenkatareddy Velagala, Gautam Srivastava\",\"doi\":\"10.1142/s0219622021500619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The creation of digital marketing has enabled companies to adopt personalized item recommendations for their customers. This process keeps them ahead of the competition. One of the techniques used in item recommendation is known as item-based recommendation system or item–item collaborative filtering. Presently, item recommendation is based completely on ratings like 1–5, which is not included in the comment section. In this context, users or customers express their feelings and thoughts about products or services. This paper proposes a machine learning model system where 0, 2, 4 are used to rate products. 0 is negative, 2 is neutral, 4 is positive. This will be in addition to the existing review system that takes care of the users’ reviews and comments, without disrupting it. We have implemented this model by using Keras, Pandas and Sci-kit Learning libraries to run the internal work. The proposed approach improved prediction with [Formula: see text] accuracy for Yelp datasets of businesses across 11 metropolitan areas in four countries, along with a mean absolute error (MAE) of [Formula: see text], precision at [Formula: see text], recall at [Formula: see text] and F1-Score at [Formula: see text]. Our model shows scalability advantage and how organizations can revolutionize their recommender systems to attract possible customers and increase patronage. Also, the proposed similarity algorithm was compared to conventional algorithms to estimate its performance and accuracy in terms of its root mean square error (RMSE), precision and recall. Results of this experiment indicate that the similarity recommendation algorithm performs better than the conventional algorithm and enhances recommendation accuracy.\",\"PeriodicalId\":13527,\"journal\":{\"name\":\"Int. J. Inf. Technol. Decis. Mak.\",\"volume\":\"80 1\",\"pages\":\"463-484\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Decis. Mak.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219622021500619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622021500619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pointer-Based Item-to-Item Collaborative Filtering Recommendation System Using a Machine Learning Model
The creation of digital marketing has enabled companies to adopt personalized item recommendations for their customers. This process keeps them ahead of the competition. One of the techniques used in item recommendation is known as item-based recommendation system or item–item collaborative filtering. Presently, item recommendation is based completely on ratings like 1–5, which is not included in the comment section. In this context, users or customers express their feelings and thoughts about products or services. This paper proposes a machine learning model system where 0, 2, 4 are used to rate products. 0 is negative, 2 is neutral, 4 is positive. This will be in addition to the existing review system that takes care of the users’ reviews and comments, without disrupting it. We have implemented this model by using Keras, Pandas and Sci-kit Learning libraries to run the internal work. The proposed approach improved prediction with [Formula: see text] accuracy for Yelp datasets of businesses across 11 metropolitan areas in four countries, along with a mean absolute error (MAE) of [Formula: see text], precision at [Formula: see text], recall at [Formula: see text] and F1-Score at [Formula: see text]. Our model shows scalability advantage and how organizations can revolutionize their recommender systems to attract possible customers and increase patronage. Also, the proposed similarity algorithm was compared to conventional algorithms to estimate its performance and accuracy in terms of its root mean square error (RMSE), precision and recall. Results of this experiment indicate that the similarity recommendation algorithm performs better than the conventional algorithm and enhances recommendation accuracy.