{"title":"(广义)关联和类拉普拉斯能量","authors":"A. D. Maden, M. T. Rahim","doi":"10.1155/2023/6205632","DOIUrl":null,"url":null,"abstract":"<jats:p>In this study, for graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi mathvariant=\"normal\">Γ</mi>\n </math>\n </jats:inline-formula> with <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>r</mi>\n </math>\n </jats:inline-formula> connected components (also for connected nonbipartite and connected bipartite graphs) and a real number <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>ε</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mo>≠</mo>\n <mn>0,1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, we found generalized and improved bounds for the sum of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>ε</mi>\n </math>\n </jats:inline-formula>-th powers of Laplacian and signless Laplacian eigenvalues of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi mathvariant=\"normal\">Γ</mi>\n </math>\n </jats:inline-formula>. Consequently, we also generalized and improved results on incidence energy <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"normal\">I</mi>\n <mi mathvariant=\"normal\">E</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and Laplacian energy-like invariant <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"normal\">L</mi>\n <mi mathvariant=\"normal\">E</mi>\n <mi mathvariant=\"normal\">L</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Generalized) Incidence and Laplacian-Like Energies\",\"authors\":\"A. D. Maden, M. T. Rahim\",\"doi\":\"10.1155/2023/6205632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this study, for graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi mathvariant=\\\"normal\\\">Γ</mi>\\n </math>\\n </jats:inline-formula> with <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>r</mi>\\n </math>\\n </jats:inline-formula> connected components (also for connected nonbipartite and connected bipartite graphs) and a real number <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>ε</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mo>≠</mo>\\n <mn>0,1</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, we found generalized and improved bounds for the sum of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>ε</mi>\\n </math>\\n </jats:inline-formula>-th powers of Laplacian and signless Laplacian eigenvalues of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi mathvariant=\\\"normal\\\">Γ</mi>\\n </math>\\n </jats:inline-formula>. Consequently, we also generalized and improved results on incidence energy <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi mathvariant=\\\"normal\\\">I</mi>\\n <mi mathvariant=\\\"normal\\\">E</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> and Laplacian energy-like invariant <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi mathvariant=\\\"normal\\\">L</mi>\\n <mi mathvariant=\\\"normal\\\">E</mi>\\n <mi mathvariant=\\\"normal\\\">L</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6205632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6205632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究中,对于具有r连通分量的图Γ(也适用于连通非二部图和连通二部图),且实数ε≠0,1得到了Γ的拉普拉斯特征值和无符号拉普拉斯特征值ε -幂和的广义和改进界。因此,我们还推广和改进了有关入射能E和拉普拉斯类能不变量L E L的结果。
(Generalized) Incidence and Laplacian-Like Energies
In this study, for graph with connected components (also for connected nonbipartite and connected bipartite graphs) and a real number , we found generalized and improved bounds for the sum of -th powers of Laplacian and signless Laplacian eigenvalues of . Consequently, we also generalized and improved results on incidence energy and Laplacian energy-like invariant .