SQuaFL:草图量化启发的沟通高效联邦学习

Pavana Prakash, Jiahao Ding, Minglei Shu, Junyi Wang, Wenjun Xu, Miao Pan
{"title":"SQuaFL:草图量化启发的沟通高效联邦学习","authors":"Pavana Prakash, Jiahao Ding, Minglei Shu, Junyi Wang, Wenjun Xu, Miao Pan","doi":"10.1145/3453142.3491415","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) is a fast-growing distributed learning paradigm with widespread applications especially over mobile devices, since it trains high-quality deep learning models while keeping the data private. This aspect is most suitable in multi-access edge computing settings where FL leverages distributed data from numerous mobile edge devices for training. However, FL involves frequent global synchronization of periodic updates over links often with transmission rate limits, inflicting communication burdens. Moreover, the intensive on-device computation of local updates results in computation and memory overhead on resource constricted mobile devices. To address these challenges, in this paper, we introduce SQuaFL, a sketched quantization based novel FL method which aims at communication efficiency while preserving privacy. In particular, we compress the accumulation of local gradients using quantization and Count Sketches without adding explicit noise, sacrificing the learning performance, or introducing a computation overhead. We provide theoretical guarantees of convergence of our proposed scheme and perform extensive simulations to demonstrate its efficacy over baseline methods.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SQuaFL: Sketch-Quantization Inspired Communication Efficient Federated Learning\",\"authors\":\"Pavana Prakash, Jiahao Ding, Minglei Shu, Junyi Wang, Wenjun Xu, Miao Pan\",\"doi\":\"10.1145/3453142.3491415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning (FL) is a fast-growing distributed learning paradigm with widespread applications especially over mobile devices, since it trains high-quality deep learning models while keeping the data private. This aspect is most suitable in multi-access edge computing settings where FL leverages distributed data from numerous mobile edge devices for training. However, FL involves frequent global synchronization of periodic updates over links often with transmission rate limits, inflicting communication burdens. Moreover, the intensive on-device computation of local updates results in computation and memory overhead on resource constricted mobile devices. To address these challenges, in this paper, we introduce SQuaFL, a sketched quantization based novel FL method which aims at communication efficiency while preserving privacy. In particular, we compress the accumulation of local gradients using quantization and Count Sketches without adding explicit noise, sacrificing the learning performance, or introducing a computation overhead. We provide theoretical guarantees of convergence of our proposed scheme and perform extensive simulations to demonstrate its efficacy over baseline methods.\",\"PeriodicalId\":6779,\"journal\":{\"name\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453142.3491415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3491415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

联邦学习(FL)是一种快速发展的分布式学习范式,具有广泛的应用,特别是在移动设备上,因为它训练高质量的深度学习模型,同时保持数据的私密性。这方面最适合多访问边缘计算设置,其中FL利用来自众多移动边缘设备的分布式数据进行训练。然而,FL涉及在链路上频繁地进行周期性更新的全局同步,通常具有传输速率限制,从而造成通信负担。此外,本地更新的密集设备上计算导致资源有限的移动设备上的计算和内存开销。为了解决这些挑战,本文引入了SQuaFL,一种基于草图量化的新型FL方法,旨在提高通信效率,同时保护隐私。特别是,我们使用量化和计数草图压缩局部梯度的积累,而不添加显式噪声,牺牲学习性能或引入计算开销。我们提供了理论保证我们提出的方案的收敛性,并进行了广泛的模拟,以证明其优于基线方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SQuaFL: Sketch-Quantization Inspired Communication Efficient Federated Learning
Federated Learning (FL) is a fast-growing distributed learning paradigm with widespread applications especially over mobile devices, since it trains high-quality deep learning models while keeping the data private. This aspect is most suitable in multi-access edge computing settings where FL leverages distributed data from numerous mobile edge devices for training. However, FL involves frequent global synchronization of periodic updates over links often with transmission rate limits, inflicting communication burdens. Moreover, the intensive on-device computation of local updates results in computation and memory overhead on resource constricted mobile devices. To address these challenges, in this paper, we introduce SQuaFL, a sketched quantization based novel FL method which aims at communication efficiency while preserving privacy. In particular, we compress the accumulation of local gradients using quantization and Count Sketches without adding explicit noise, sacrificing the learning performance, or introducing a computation overhead. We provide theoretical guarantees of convergence of our proposed scheme and perform extensive simulations to demonstrate its efficacy over baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信