{"title":"用于短期交通流预测的融合注意力机制双向 LSTM","authors":"","doi":"10.1080/15472450.2022.2142049","DOIUrl":null,"url":null,"abstract":"<div><p>Short term forecasting is essential and challenging in time series data analysis for traffic flow research. A novel deep learning architecture on short-term traffic flow prediction was presented in this work. In conventional model-driven prediction method, a critical deviation in prediction accuracy was occurred in face of large fluctuations in traffic flow, while machine and deep learning-based approaches performed well in accuracy study than conventional regression-based models. Moreover, a fusion attention mechanism bidirectional long short-term memory model (ATT-BiLSTM) was proposed due to its bidirectional LSTM (BiLSTM) and attention mechanism units. The model not only dealt with forward and backward dependencies in time series data, but also integrated the attention mechanism to improve the ability on key information representation. The BiLSTM layer was exploited to capture bidirectional temporal and spatial features dependencies from historical data. The proposed model was also trained and validated using freeway toll datasets from Humen Bridge. The results showed that compared with ARIMA and SVR models, the indicators of the proposed model have been significantly improved. The ablation experiments were conducted to evaluate the role of the attention mechanism module. Compared with BiLSTM, CNN and 1DCNN-ATT-BiLSTM models, the MAE, RMSE and MAPE indexes of proposed model were reduced by 0.6–5.9%, 1.6–4.7% and 0.6–22.8%, respectively. More accurate predictions were obtained by the proposed model. The research results are of great significance to improve the level of traffic management.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 4","pages":"Pages 511-524"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion attention mechanism bidirectional LSTM for short-term traffic flow prediction\",\"authors\":\"\",\"doi\":\"10.1080/15472450.2022.2142049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Short term forecasting is essential and challenging in time series data analysis for traffic flow research. A novel deep learning architecture on short-term traffic flow prediction was presented in this work. In conventional model-driven prediction method, a critical deviation in prediction accuracy was occurred in face of large fluctuations in traffic flow, while machine and deep learning-based approaches performed well in accuracy study than conventional regression-based models. Moreover, a fusion attention mechanism bidirectional long short-term memory model (ATT-BiLSTM) was proposed due to its bidirectional LSTM (BiLSTM) and attention mechanism units. The model not only dealt with forward and backward dependencies in time series data, but also integrated the attention mechanism to improve the ability on key information representation. The BiLSTM layer was exploited to capture bidirectional temporal and spatial features dependencies from historical data. The proposed model was also trained and validated using freeway toll datasets from Humen Bridge. The results showed that compared with ARIMA and SVR models, the indicators of the proposed model have been significantly improved. The ablation experiments were conducted to evaluate the role of the attention mechanism module. Compared with BiLSTM, CNN and 1DCNN-ATT-BiLSTM models, the MAE, RMSE and MAPE indexes of proposed model were reduced by 0.6–5.9%, 1.6–4.7% and 0.6–22.8%, respectively. More accurate predictions were obtained by the proposed model. The research results are of great significance to improve the level of traffic management.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"28 4\",\"pages\":\"Pages 511-524\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245023000324\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000324","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Fusion attention mechanism bidirectional LSTM for short-term traffic flow prediction
Short term forecasting is essential and challenging in time series data analysis for traffic flow research. A novel deep learning architecture on short-term traffic flow prediction was presented in this work. In conventional model-driven prediction method, a critical deviation in prediction accuracy was occurred in face of large fluctuations in traffic flow, while machine and deep learning-based approaches performed well in accuracy study than conventional regression-based models. Moreover, a fusion attention mechanism bidirectional long short-term memory model (ATT-BiLSTM) was proposed due to its bidirectional LSTM (BiLSTM) and attention mechanism units. The model not only dealt with forward and backward dependencies in time series data, but also integrated the attention mechanism to improve the ability on key information representation. The BiLSTM layer was exploited to capture bidirectional temporal and spatial features dependencies from historical data. The proposed model was also trained and validated using freeway toll datasets from Humen Bridge. The results showed that compared with ARIMA and SVR models, the indicators of the proposed model have been significantly improved. The ablation experiments were conducted to evaluate the role of the attention mechanism module. Compared with BiLSTM, CNN and 1DCNN-ATT-BiLSTM models, the MAE, RMSE and MAPE indexes of proposed model were reduced by 0.6–5.9%, 1.6–4.7% and 0.6–22.8%, respectively. More accurate predictions were obtained by the proposed model. The research results are of great significance to improve the level of traffic management.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.