用闭型微扰理论表征受限三体问题中木星外轨道的稳定性

Mattia Rossi, C. Efthymiopoulos
{"title":"用闭型微扰理论表征受限三体问题中木星外轨道的稳定性","authors":"Mattia Rossi, C. Efthymiopoulos","doi":"10.1017/S1743921321001253","DOIUrl":null,"url":null,"abstract":"Abstract We address the question of identifying the long-term (secular) stability regions in the semi-major axis-eccentricity projected phase space of the Sun-Jupiter planar circular restricted three-body problem in the domains i) below the curve of apsis equal to the planet’s orbital radius (ensuring protection from collisions) and ii) above that curve. This last domain contains several Jupiter’s crossing trajectories. We discuss the structure of the numerical stability map in the (a,e) plane in relation to manifold dynamics. We also present a closed-form perturbation theory for particles with non-crossing highly eccentric trajectories exterior to the planet’s trajectory. Starting with a multipole expansion of the barycentric Hamiltonian, our method carries out a sequence of normalizations by Lie series in closed-form and without relegation. We discuss the applicability of the method as a criterion for estimating the boundary of the domain of regular motion.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of the stability for trajectories exterior to Jupiter in the restricted three-body problem via closed-form perturbation theory\",\"authors\":\"Mattia Rossi, C. Efthymiopoulos\",\"doi\":\"10.1017/S1743921321001253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We address the question of identifying the long-term (secular) stability regions in the semi-major axis-eccentricity projected phase space of the Sun-Jupiter planar circular restricted three-body problem in the domains i) below the curve of apsis equal to the planet’s orbital radius (ensuring protection from collisions) and ii) above that curve. This last domain contains several Jupiter’s crossing trajectories. We discuss the structure of the numerical stability map in the (a,e) plane in relation to manifold dynamics. We also present a closed-form perturbation theory for particles with non-crossing highly eccentric trajectories exterior to the planet’s trajectory. Starting with a multipole expansion of the barycentric Hamiltonian, our method carries out a sequence of normalizations by Lie series in closed-form and without relegation. We discuss the applicability of the method as a criterion for estimating the boundary of the domain of regular motion.\",\"PeriodicalId\":20590,\"journal\":{\"name\":\"Proceedings of the International Astronomical Union\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Astronomical Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1743921321001253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921321001253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在太阳-木星平面圆形限制三体问题的半长轴-偏心投影相空间中,我们解决了在i)俯角等于行星轨道半径曲线以下(确保免受碰撞)和ii)曲线以上的区域中确定长期(长期)稳定区域的问题。最后一个区域包含了几个木星的穿越轨迹。讨论了与流形动力学相关的(a,e)平面数值稳定性映射的结构。我们还提出了一个封闭形式的微扰理论,用于行星轨道外具有非交叉高偏心轨迹的粒子。我们的方法从重心哈密顿量的多极展开开始,在封闭形式和无降级的情况下,通过李级数实现一系列的归一化。讨论了该方法作为估计规则运动域边界的判据的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of the stability for trajectories exterior to Jupiter in the restricted three-body problem via closed-form perturbation theory
Abstract We address the question of identifying the long-term (secular) stability regions in the semi-major axis-eccentricity projected phase space of the Sun-Jupiter planar circular restricted three-body problem in the domains i) below the curve of apsis equal to the planet’s orbital radius (ensuring protection from collisions) and ii) above that curve. This last domain contains several Jupiter’s crossing trajectories. We discuss the structure of the numerical stability map in the (a,e) plane in relation to manifold dynamics. We also present a closed-form perturbation theory for particles with non-crossing highly eccentric trajectories exterior to the planet’s trajectory. Starting with a multipole expansion of the barycentric Hamiltonian, our method carries out a sequence of normalizations by Lie series in closed-form and without relegation. We discuss the applicability of the method as a criterion for estimating the boundary of the domain of regular motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信