线性移动洒水系统的变速率灌溉均匀性模型

IF 1.4 4区 农林科学 Q3 AGRICULTURAL ENGINEERING
Junping Liu, Umair Gull, D. Putnam, Isaya Kisekka
{"title":"线性移动洒水系统的变速率灌溉均匀性模型","authors":"Junping Liu, Umair Gull, D. Putnam, Isaya Kisekka","doi":"10.13031/trans.14313","DOIUrl":null,"url":null,"abstract":"HighlightsUsing different nozzle sizes on a linear-move sprinkler irrigation system is a simple method for implementing VRI.This study established a variable-rate sprinkler irrigation model for a linear-move system with different nozzles.Uniformity parameters were predicted for different tests, and prediction accuracy ranged from 1.6% to 13.0%.The simulation model can be applied to other sprinkler systems with variable-rate irrigation.Abstract. Variable-rate irrigation (VRI) can vary the application rate by either changing the amount of water flowing through sprinkler nozzles (zone control) or varying the speed of a moving irrigation system across parts of a field, referred to as speed/sector control. The uniformity of sprinkler irrigation in each management zone under VRI directly affects crop growth and yield. The use of different nozzle diameters on a linear-move sprinkler irrigation system is a simple and affordable method for achieving VRI. There are few studies on modeling the uniformity of VRI on linear-move sprinkler irrigation systems. In this study, a cubic spline difference-value model was used to simulate the variable-rate water distribution and uniformity of a linear-move system. Nine tests were designed to evaluate VRI uniformity with different nozzle diameters. A simulation and corresponding field experiments were carried out. The application rate of the simulation model was higher than the experimental values because of wind drift. The uniformity coefficients of the simulation with nozzle diameters of 1.98, 2.97, and 4.17 mm in tests 1, 2, and 3 were 86.56%, 85.24%, and 79.94%, respectively. The uniformity coefficients of the VRI simulations with combinations of nozzle diameters in tests 4 through 9 were 76.89%, 80.70%, 76.67%, 69.58%, 76.64%, and 81.87%, respectively. The smallest error between the simulation and experiment was 1.6%, and the largest error was 13.0%. The simulation model and prediction method can be applied to other sprinkler irrigation systems. Keywords: Linear move, Simulation model, Sprinkler irrigation, Uniformity, VRI.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":"49 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Variable-Rate Irrigation Uniformity Model for Linear-Move Sprinkler Systems\",\"authors\":\"Junping Liu, Umair Gull, D. Putnam, Isaya Kisekka\",\"doi\":\"10.13031/trans.14313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HighlightsUsing different nozzle sizes on a linear-move sprinkler irrigation system is a simple method for implementing VRI.This study established a variable-rate sprinkler irrigation model for a linear-move system with different nozzles.Uniformity parameters were predicted for different tests, and prediction accuracy ranged from 1.6% to 13.0%.The simulation model can be applied to other sprinkler systems with variable-rate irrigation.Abstract. Variable-rate irrigation (VRI) can vary the application rate by either changing the amount of water flowing through sprinkler nozzles (zone control) or varying the speed of a moving irrigation system across parts of a field, referred to as speed/sector control. The uniformity of sprinkler irrigation in each management zone under VRI directly affects crop growth and yield. The use of different nozzle diameters on a linear-move sprinkler irrigation system is a simple and affordable method for achieving VRI. There are few studies on modeling the uniformity of VRI on linear-move sprinkler irrigation systems. In this study, a cubic spline difference-value model was used to simulate the variable-rate water distribution and uniformity of a linear-move system. Nine tests were designed to evaluate VRI uniformity with different nozzle diameters. A simulation and corresponding field experiments were carried out. The application rate of the simulation model was higher than the experimental values because of wind drift. The uniformity coefficients of the simulation with nozzle diameters of 1.98, 2.97, and 4.17 mm in tests 1, 2, and 3 were 86.56%, 85.24%, and 79.94%, respectively. The uniformity coefficients of the VRI simulations with combinations of nozzle diameters in tests 4 through 9 were 76.89%, 80.70%, 76.67%, 69.58%, 76.64%, and 81.87%, respectively. The smallest error between the simulation and experiment was 1.6%, and the largest error was 13.0%. The simulation model and prediction method can be applied to other sprinkler irrigation systems. Keywords: Linear move, Simulation model, Sprinkler irrigation, Uniformity, VRI.\",\"PeriodicalId\":23120,\"journal\":{\"name\":\"Transactions of the ASABE\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the ASABE\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13031/trans.14313\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the ASABE","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/trans.14313","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

在线性移动喷灌系统上使用不同的喷嘴尺寸是实现VRI的简单方法。建立了具有不同喷头的线性运动系统的变流量喷灌模型。对不同试验的均匀性参数进行了预测,预测准确率为1.6% ~ 13.0%。该仿真模型可应用于其他变流量喷灌系统。可变速率灌溉(VRI)可以通过改变通过喷灌喷嘴的水量(区域控制)或改变农田各部分移动灌溉系统的速度(称为速度/扇区控制)来改变施水量。VRI下各管理区喷灌均匀性直接影响作物生长和产量。在线性移动喷灌系统上使用不同的喷嘴直径是实现VRI的一种简单而经济的方法。关于线性移动喷灌系统VRI均匀性的建模研究很少。本文采用三次样条差值模型模拟了线性运动系统的变速率水分布和均匀性。设计了9个试验来评估不同喷嘴直径下VRI的均匀性。进行了仿真和相应的现场试验。由于风漂的影响,模拟模型的应用率高于实验值。试验1、试验2和试验3中喷嘴直径分别为1.98、2.97和4.17 mm时的均匀性系数分别为86.56%、85.24%和79.94%。试验4 ~ 9中不同喷嘴直径组合的VRI模拟均匀性系数分别为76.89%、80.70%、76.67%、69.58%、76.64%和81.87%。仿真与实验的最小误差为1.6%,最大误差为13.0%。该仿真模型和预测方法可应用于其他喷灌系统。关键词:线性移动,仿真模型,喷灌,均匀性,VRI
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable-Rate Irrigation Uniformity Model for Linear-Move Sprinkler Systems
HighlightsUsing different nozzle sizes on a linear-move sprinkler irrigation system is a simple method for implementing VRI.This study established a variable-rate sprinkler irrigation model for a linear-move system with different nozzles.Uniformity parameters were predicted for different tests, and prediction accuracy ranged from 1.6% to 13.0%.The simulation model can be applied to other sprinkler systems with variable-rate irrigation.Abstract. Variable-rate irrigation (VRI) can vary the application rate by either changing the amount of water flowing through sprinkler nozzles (zone control) or varying the speed of a moving irrigation system across parts of a field, referred to as speed/sector control. The uniformity of sprinkler irrigation in each management zone under VRI directly affects crop growth and yield. The use of different nozzle diameters on a linear-move sprinkler irrigation system is a simple and affordable method for achieving VRI. There are few studies on modeling the uniformity of VRI on linear-move sprinkler irrigation systems. In this study, a cubic spline difference-value model was used to simulate the variable-rate water distribution and uniformity of a linear-move system. Nine tests were designed to evaluate VRI uniformity with different nozzle diameters. A simulation and corresponding field experiments were carried out. The application rate of the simulation model was higher than the experimental values because of wind drift. The uniformity coefficients of the simulation with nozzle diameters of 1.98, 2.97, and 4.17 mm in tests 1, 2, and 3 were 86.56%, 85.24%, and 79.94%, respectively. The uniformity coefficients of the VRI simulations with combinations of nozzle diameters in tests 4 through 9 were 76.89%, 80.70%, 76.67%, 69.58%, 76.64%, and 81.87%, respectively. The smallest error between the simulation and experiment was 1.6%, and the largest error was 13.0%. The simulation model and prediction method can be applied to other sprinkler irrigation systems. Keywords: Linear move, Simulation model, Sprinkler irrigation, Uniformity, VRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the ASABE
Transactions of the ASABE AGRICULTURAL ENGINEERING-
CiteScore
2.30
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: This peer-reviewed journal publishes research that advances the engineering of agricultural, food, and biological systems. Submissions must include original data, analysis or design, or synthesis of existing information; research information for the improvement of education, design, construction, or manufacturing practice; or significant and convincing evidence that confirms and strengthens the findings of others or that revises ideas or challenges accepted theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信