{"title":"柔性内压螺栓的应力与变形有限元分析","authors":"Zhong-he CHEN , Wei-qiang WANG , Le-wen ZHANG","doi":"10.1016/S1006-1266(08)60299-0","DOIUrl":null,"url":null,"abstract":"<div><p>The flexible inner pressure bolt is a new kind and new structural bolt (anchor rod). A number of structural improvements and performance test have been carried out. The bolt has superior compatibility to the soft crag and the large distortion tunnel with its flexibility. In order to study its stress, deformation and interaction mechanism thoroughly, a number of large distortion calculations and analyses have been carried out on the bolt by FEM (finite element method), especially with the ANSYS software, based on the updated Lagrangian law. The results show that the maximum stress of the inner wall of the bolt is consistent with an elastic analytic solution. The maximum stress on the body occurs in the vicinity of the enhancement material. The link enhancement of the body seems to be quite essential. The experimental results indicate that the maximum injection pressure in the bolt is 2.5 MPa without link enhancement and 8.3 MPa with the enhancement. This link enhancement effect is highly significant. These results provide some basis for the design, application and anchoring stress analysis of the bolt.</p></div>","PeriodicalId":15315,"journal":{"name":"Journal of China University of Mining and Technology","volume":"18 4","pages":"Pages 584-587, 593"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-1266(08)60299-0","citationCount":"10","resultStr":"{\"title\":\"FEM analyses of stress and deformation of a flexible inner pressure bolt\",\"authors\":\"Zhong-he CHEN , Wei-qiang WANG , Le-wen ZHANG\",\"doi\":\"10.1016/S1006-1266(08)60299-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The flexible inner pressure bolt is a new kind and new structural bolt (anchor rod). A number of structural improvements and performance test have been carried out. The bolt has superior compatibility to the soft crag and the large distortion tunnel with its flexibility. In order to study its stress, deformation and interaction mechanism thoroughly, a number of large distortion calculations and analyses have been carried out on the bolt by FEM (finite element method), especially with the ANSYS software, based on the updated Lagrangian law. The results show that the maximum stress of the inner wall of the bolt is consistent with an elastic analytic solution. The maximum stress on the body occurs in the vicinity of the enhancement material. The link enhancement of the body seems to be quite essential. The experimental results indicate that the maximum injection pressure in the bolt is 2.5 MPa without link enhancement and 8.3 MPa with the enhancement. This link enhancement effect is highly significant. These results provide some basis for the design, application and anchoring stress analysis of the bolt.</p></div>\",\"PeriodicalId\":15315,\"journal\":{\"name\":\"Journal of China University of Mining and Technology\",\"volume\":\"18 4\",\"pages\":\"Pages 584-587, 593\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1006-1266(08)60299-0\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of China University of Mining and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1006126608602990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China University of Mining and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006126608602990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FEM analyses of stress and deformation of a flexible inner pressure bolt
The flexible inner pressure bolt is a new kind and new structural bolt (anchor rod). A number of structural improvements and performance test have been carried out. The bolt has superior compatibility to the soft crag and the large distortion tunnel with its flexibility. In order to study its stress, deformation and interaction mechanism thoroughly, a number of large distortion calculations and analyses have been carried out on the bolt by FEM (finite element method), especially with the ANSYS software, based on the updated Lagrangian law. The results show that the maximum stress of the inner wall of the bolt is consistent with an elastic analytic solution. The maximum stress on the body occurs in the vicinity of the enhancement material. The link enhancement of the body seems to be quite essential. The experimental results indicate that the maximum injection pressure in the bolt is 2.5 MPa without link enhancement and 8.3 MPa with the enhancement. This link enhancement effect is highly significant. These results provide some basis for the design, application and anchoring stress analysis of the bolt.