基于降序向量滤波器的距离度量

M. E. Celebi
{"title":"基于降序向量滤波器的距离度量","authors":"M. E. Celebi","doi":"10.1049/iet-ipr.2009.0056","DOIUrl":null,"url":null,"abstract":"Reduced ordering-based vector filters have proved successful in removing long-tailed noise from colour images while preserving edges and fine image details. These filters commonly utilise variants of the Minkowski distance to order the colour vectors with the aim of distinguishing between noisy and noise-free vectors. In this study, the authors review various alternative distance measures and evaluate their performance on a large and diverse set of images using several effectiveness and efficiency criteria. The results demonstrate that there are in fact strong alternatives to the popular Minkowski metrics.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"7 1","pages":"249-260"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Distance Measures for Reduced Ordering Based Vector Filters\",\"authors\":\"M. E. Celebi\",\"doi\":\"10.1049/iet-ipr.2009.0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reduced ordering-based vector filters have proved successful in removing long-tailed noise from colour images while preserving edges and fine image details. These filters commonly utilise variants of the Minkowski distance to order the colour vectors with the aim of distinguishing between noisy and noise-free vectors. In this study, the authors review various alternative distance measures and evaluate their performance on a large and diverse set of images using several effectiveness and efficiency criteria. The results demonstrate that there are in fact strong alternatives to the popular Minkowski metrics.\",\"PeriodicalId\":13486,\"journal\":{\"name\":\"IET Image Process.\",\"volume\":\"7 1\",\"pages\":\"249-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-ipr.2009.0056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-ipr.2009.0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

基于简化排序的矢量滤波器已被证明能够成功地去除彩色图像中的长尾噪声,同时保留图像的边缘和精细细节。这些滤波器通常利用闵可夫斯基距离的变体来对颜色向量排序,目的是区分有噪声和无噪声向量。在本研究中,作者回顾了各种可选的距离测量方法,并使用几种有效性和效率标准评估了它们在大量不同图像上的性能。结果表明,事实上有强大的替代流行的闵可夫斯基指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance Measures for Reduced Ordering Based Vector Filters
Reduced ordering-based vector filters have proved successful in removing long-tailed noise from colour images while preserving edges and fine image details. These filters commonly utilise variants of the Minkowski distance to order the colour vectors with the aim of distinguishing between noisy and noise-free vectors. In this study, the authors review various alternative distance measures and evaluate their performance on a large and diverse set of images using several effectiveness and efficiency criteria. The results demonstrate that there are in fact strong alternatives to the popular Minkowski metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信