{"title":"粘弹性支承上固体振动的动态阻尼","authors":"I. Safarov, M. Teshaev","doi":"10.18500/0869-6632-003021","DOIUrl":null,"url":null,"abstract":"The study of the problem of damping vibrations of a solid body mounted on viscoelastic supports is an urgent task. The paper considers the problem of reducing the level of vibrations on the paws of electric machines using dynamic vibration dampers. For this purpose, the paw of electric machines is represented in the form of a subamortized solid body with six degrees of freedom mounted on viscoelastic supports. The aim of the work is to develop calculation methods and algorithms for studying the oscillations of the resonant amplitudes of a solid body mounted on viscoelastic supports. Dynamic oscillation (vibration) damping method consists in attaching a system to the protected object, the reactions of which reduce the scope of vibration of the object at the points of attachment of this system. Applying the D’Alembert principle, the equations of small vibrations of a solid with dampers are derived. For practical calculations, a simplified system of equations was obtained that takes into account only three degrees of freedom. Numerical calculations were carried out on a computer to determine the amplitude-frequency characteristics of the main body. Numerical experiments were carried out using the Matlab mathematical package. Considering that a solid body is characterized by vibration, as a rule, in a continuous and wide frequency range, therefore, dynamic vibration dampers are used to protect a solid body mounted on viscoelastic supports. It was found that when the damper is set at a frequency of 50 Hz, the vibration level at the left end of the frequency interval of rotary motion of the rotor-converter, decreases to 37.5 dB, and at the right end — to 42.5 dB. At a frequency of 50 Hz, the paws do not oscillate. When setting the dampers to a frequency of 51.5 Hz, the maximum vibration level does not exceed 40 dB. The optimal setting of the dampers is within the frequency of 50.60...50.70 Hz, and a two-mass extinguisher is 10–15% more efficient than a single-mass one. Thus, the paper sets the tasks of dynamic damping of vibrations of a solid body mounted on viscoelastic supports, develops solution methods and an algorithm for determining the dynamic state of a solid body with passive vibration of the object in question.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"26 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic damping of vibrations of a solid body mounted on viscoelastic supports\",\"authors\":\"I. Safarov, M. Teshaev\",\"doi\":\"10.18500/0869-6632-003021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of the problem of damping vibrations of a solid body mounted on viscoelastic supports is an urgent task. The paper considers the problem of reducing the level of vibrations on the paws of electric machines using dynamic vibration dampers. For this purpose, the paw of electric machines is represented in the form of a subamortized solid body with six degrees of freedom mounted on viscoelastic supports. The aim of the work is to develop calculation methods and algorithms for studying the oscillations of the resonant amplitudes of a solid body mounted on viscoelastic supports. Dynamic oscillation (vibration) damping method consists in attaching a system to the protected object, the reactions of which reduce the scope of vibration of the object at the points of attachment of this system. Applying the D’Alembert principle, the equations of small vibrations of a solid with dampers are derived. For practical calculations, a simplified system of equations was obtained that takes into account only three degrees of freedom. Numerical calculations were carried out on a computer to determine the amplitude-frequency characteristics of the main body. Numerical experiments were carried out using the Matlab mathematical package. Considering that a solid body is characterized by vibration, as a rule, in a continuous and wide frequency range, therefore, dynamic vibration dampers are used to protect a solid body mounted on viscoelastic supports. It was found that when the damper is set at a frequency of 50 Hz, the vibration level at the left end of the frequency interval of rotary motion of the rotor-converter, decreases to 37.5 dB, and at the right end — to 42.5 dB. At a frequency of 50 Hz, the paws do not oscillate. When setting the dampers to a frequency of 51.5 Hz, the maximum vibration level does not exceed 40 dB. The optimal setting of the dampers is within the frequency of 50.60...50.70 Hz, and a two-mass extinguisher is 10–15% more efficient than a single-mass one. Thus, the paper sets the tasks of dynamic damping of vibrations of a solid body mounted on viscoelastic supports, develops solution methods and an algorithm for determining the dynamic state of a solid body with passive vibration of the object in question.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic damping of vibrations of a solid body mounted on viscoelastic supports
The study of the problem of damping vibrations of a solid body mounted on viscoelastic supports is an urgent task. The paper considers the problem of reducing the level of vibrations on the paws of electric machines using dynamic vibration dampers. For this purpose, the paw of electric machines is represented in the form of a subamortized solid body with six degrees of freedom mounted on viscoelastic supports. The aim of the work is to develop calculation methods and algorithms for studying the oscillations of the resonant amplitudes of a solid body mounted on viscoelastic supports. Dynamic oscillation (vibration) damping method consists in attaching a system to the protected object, the reactions of which reduce the scope of vibration of the object at the points of attachment of this system. Applying the D’Alembert principle, the equations of small vibrations of a solid with dampers are derived. For practical calculations, a simplified system of equations was obtained that takes into account only three degrees of freedom. Numerical calculations were carried out on a computer to determine the amplitude-frequency characteristics of the main body. Numerical experiments were carried out using the Matlab mathematical package. Considering that a solid body is characterized by vibration, as a rule, in a continuous and wide frequency range, therefore, dynamic vibration dampers are used to protect a solid body mounted on viscoelastic supports. It was found that when the damper is set at a frequency of 50 Hz, the vibration level at the left end of the frequency interval of rotary motion of the rotor-converter, decreases to 37.5 dB, and at the right end — to 42.5 dB. At a frequency of 50 Hz, the paws do not oscillate. When setting the dampers to a frequency of 51.5 Hz, the maximum vibration level does not exceed 40 dB. The optimal setting of the dampers is within the frequency of 50.60...50.70 Hz, and a two-mass extinguisher is 10–15% more efficient than a single-mass one. Thus, the paper sets the tasks of dynamic damping of vibrations of a solid body mounted on viscoelastic supports, develops solution methods and an algorithm for determining the dynamic state of a solid body with passive vibration of the object in question.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.