{"title":"恒星等离子体束的无线电探测前景","authors":"H. K. Vedantham","doi":"10.1051/0004-6361/202038576","DOIUrl":null,"url":null,"abstract":"Violent solar eruptions are often accompanied by relativistic beams of charged particles. In the solar context, they are referred to as SPEs (Solar Particle Events) and are known to generate a characteristic swept-frequency radio burst. Due to their ionizing potential, such beams influence atmospheric chemistry and habitability. Radio observations provide a crucial discriminant between stellar flares that do and do not generate particle beams. Here I use solar empirical data and semi-quantitative theoretical estimates to gauge the feasibility of detecting the associated radio bursts. My principal conclusion is that a dedicated search for swept frequency radio bursts on second-timescales in existing low-frequency ($\\nu\\lesssim 10^2\\,{\\rm MHz}$) datasets, while technically challenging, will likely evidence high energy particles beams in Sun-like stars.","PeriodicalId":8493,"journal":{"name":"arXiv: Solar and Stellar Astrophysics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prospects for radio detection of stellar plasma beams\",\"authors\":\"H. K. Vedantham\",\"doi\":\"10.1051/0004-6361/202038576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Violent solar eruptions are often accompanied by relativistic beams of charged particles. In the solar context, they are referred to as SPEs (Solar Particle Events) and are known to generate a characteristic swept-frequency radio burst. Due to their ionizing potential, such beams influence atmospheric chemistry and habitability. Radio observations provide a crucial discriminant between stellar flares that do and do not generate particle beams. Here I use solar empirical data and semi-quantitative theoretical estimates to gauge the feasibility of detecting the associated radio bursts. My principal conclusion is that a dedicated search for swept frequency radio bursts on second-timescales in existing low-frequency ($\\\\nu\\\\lesssim 10^2\\\\,{\\\\rm MHz}$) datasets, while technically challenging, will likely evidence high energy particles beams in Sun-like stars.\",\"PeriodicalId\":8493,\"journal\":{\"name\":\"arXiv: Solar and Stellar Astrophysics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Solar and Stellar Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202038576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202038576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prospects for radio detection of stellar plasma beams
Violent solar eruptions are often accompanied by relativistic beams of charged particles. In the solar context, they are referred to as SPEs (Solar Particle Events) and are known to generate a characteristic swept-frequency radio burst. Due to their ionizing potential, such beams influence atmospheric chemistry and habitability. Radio observations provide a crucial discriminant between stellar flares that do and do not generate particle beams. Here I use solar empirical data and semi-quantitative theoretical estimates to gauge the feasibility of detecting the associated radio bursts. My principal conclusion is that a dedicated search for swept frequency radio bursts on second-timescales in existing low-frequency ($\nu\lesssim 10^2\,{\rm MHz}$) datasets, while technically challenging, will likely evidence high energy particles beams in Sun-like stars.