{"title":"共轭代数的结构与分类","authors":"A. Makhlouf, Ahmed Zahari","doi":"10.12697/ACUTM.2020.24.06","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study the structure and the algebraic varieties of Hom-associative algebras. We characterize multiplicative simple Hom-associative algebras and give some examples deforming the 2 × 2-matrix algebra to simple Hom-associative algebras. We provide a classification of n-dimensional Hom-associative algebras for n ≤ 3. Then we study irreducible components using deformation theory.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"57 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Structure and classification of Hom-associative algebras\",\"authors\":\"A. Makhlouf, Ahmed Zahari\",\"doi\":\"10.12697/ACUTM.2020.24.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to study the structure and the algebraic varieties of Hom-associative algebras. We characterize multiplicative simple Hom-associative algebras and give some examples deforming the 2 × 2-matrix algebra to simple Hom-associative algebras. We provide a classification of n-dimensional Hom-associative algebras for n ≤ 3. Then we study irreducible components using deformation theory.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2020.24.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2020.24.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Structure and classification of Hom-associative algebras
The purpose of this paper is to study the structure and the algebraic varieties of Hom-associative algebras. We characterize multiplicative simple Hom-associative algebras and give some examples deforming the 2 × 2-matrix algebra to simple Hom-associative algebras. We provide a classification of n-dimensional Hom-associative algebras for n ≤ 3. Then we study irreducible components using deformation theory.