Athanasios Papadimitriou, D. Hély, V. Beroulle, P. Maistri, R. Leveugle
{"title":"面向激光攻击RTL建模的基于锥划分的多故障注入方法","authors":"Athanasios Papadimitriou, D. Hély, V. Beroulle, P. Maistri, R. Leveugle","doi":"10.7873/DATE2014.219","DOIUrl":null,"url":null,"abstract":"Laser attacks, especially on circuits manufactured with recent deep submicron semiconductor technologies, pose a threat to secure integrated circuits due to the multiplicity of errors induced by a single attack. An efficient way to neutralize such effects is the design of appropriate countermeasures, according to the circuit implementation and characteristics. Therefore tools which allow the early evaluation of security implementations are necessary. Our efforts involve the development of an RTL fault injection approach more representative of laser attacks than random multi-bit fault injections and the utilization and evolution of state of the art emulation techniques to reduce the duration of the fault injection campaigns. This will ultimately lead to the design and validation of new countermeasures against laser attacks, on ASICs implementing cryptographic algorithms.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"58 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A multiple fault injection methodology based on cone partitioning towards RTL modeling of laser attacks\",\"authors\":\"Athanasios Papadimitriou, D. Hély, V. Beroulle, P. Maistri, R. Leveugle\",\"doi\":\"10.7873/DATE2014.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser attacks, especially on circuits manufactured with recent deep submicron semiconductor technologies, pose a threat to secure integrated circuits due to the multiplicity of errors induced by a single attack. An efficient way to neutralize such effects is the design of appropriate countermeasures, according to the circuit implementation and characteristics. Therefore tools which allow the early evaluation of security implementations are necessary. Our efforts involve the development of an RTL fault injection approach more representative of laser attacks than random multi-bit fault injections and the utilization and evolution of state of the art emulation techniques to reduce the duration of the fault injection campaigns. This will ultimately lead to the design and validation of new countermeasures against laser attacks, on ASICs implementing cryptographic algorithms.\",\"PeriodicalId\":6550,\"journal\":{\"name\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"58 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE2014.219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE2014.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multiple fault injection methodology based on cone partitioning towards RTL modeling of laser attacks
Laser attacks, especially on circuits manufactured with recent deep submicron semiconductor technologies, pose a threat to secure integrated circuits due to the multiplicity of errors induced by a single attack. An efficient way to neutralize such effects is the design of appropriate countermeasures, according to the circuit implementation and characteristics. Therefore tools which allow the early evaluation of security implementations are necessary. Our efforts involve the development of an RTL fault injection approach more representative of laser attacks than random multi-bit fault injections and the utilization and evolution of state of the art emulation techniques to reduce the duration of the fault injection campaigns. This will ultimately lead to the design and validation of new countermeasures against laser attacks, on ASICs implementing cryptographic algorithms.