{"title":"由理性丢番图三元组诱导的高阶椭圆曲线","authors":"A. Dujella, J. C. Peral","doi":"10.3336/gm.55.2.05","DOIUrl":null,"url":null,"abstract":"A rational Diophantine triple is a set of three nonzero rational a,b,c with the property that ab+1, ac+1, bc+1 are perfect squares. We say that the elliptic curve y2 = (ax+1)(bx+1)(cx+1) is induced by the triple {a,b,c}. In this paper, we describe a new method for construction of elliptic curves over ℚ with reasonably high rank based on a parametrization of rational Diophantine triples. In particular, we construct an elliptic curve induced by a rational Diophantine triple with rank equal to 12, and an infinite family of such curves with rank ≥ 7, which are both the current records for that kind of curves.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High rank elliptic curves induced by rational Diophantine triples\",\"authors\":\"A. Dujella, J. C. Peral\",\"doi\":\"10.3336/gm.55.2.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A rational Diophantine triple is a set of three nonzero rational a,b,c with the property that ab+1, ac+1, bc+1 are perfect squares. We say that the elliptic curve y2 = (ax+1)(bx+1)(cx+1) is induced by the triple {a,b,c}. In this paper, we describe a new method for construction of elliptic curves over ℚ with reasonably high rank based on a parametrization of rational Diophantine triples. In particular, we construct an elliptic curve induced by a rational Diophantine triple with rank equal to 12, and an infinite family of such curves with rank ≥ 7, which are both the current records for that kind of curves.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.55.2.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.2.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High rank elliptic curves induced by rational Diophantine triples
A rational Diophantine triple is a set of three nonzero rational a,b,c with the property that ab+1, ac+1, bc+1 are perfect squares. We say that the elliptic curve y2 = (ax+1)(bx+1)(cx+1) is induced by the triple {a,b,c}. In this paper, we describe a new method for construction of elliptic curves over ℚ with reasonably high rank based on a parametrization of rational Diophantine triples. In particular, we construct an elliptic curve induced by a rational Diophantine triple with rank equal to 12, and an infinite family of such curves with rank ≥ 7, which are both the current records for that kind of curves.