由理性丢番图三元组诱导的高阶椭圆曲线

IF 0.5 4区 数学 Q3 MATHEMATICS
A. Dujella, J. C. Peral
{"title":"由理性丢番图三元组诱导的高阶椭圆曲线","authors":"A. Dujella, J. C. Peral","doi":"10.3336/gm.55.2.05","DOIUrl":null,"url":null,"abstract":"A rational Diophantine triple is a set of three nonzero rational a,b,c with the property that ab+1, ac+1, bc+1 are perfect squares. We say that the elliptic curve y2 = (ax+1)(bx+1)(cx+1) is induced by the triple {a,b,c}. In this paper, we describe a new method for construction of elliptic curves over ℚ with reasonably high rank based on a parametrization of rational Diophantine triples. In particular, we construct an elliptic curve induced by a rational Diophantine triple with rank equal to 12, and an infinite family of such curves with rank ≥ 7, which are both the current records for that kind of curves.","PeriodicalId":55601,"journal":{"name":"Glasnik Matematicki","volume":"54 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High rank elliptic curves induced by rational Diophantine triples\",\"authors\":\"A. Dujella, J. C. Peral\",\"doi\":\"10.3336/gm.55.2.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A rational Diophantine triple is a set of three nonzero rational a,b,c with the property that ab+1, ac+1, bc+1 are perfect squares. We say that the elliptic curve y2 = (ax+1)(bx+1)(cx+1) is induced by the triple {a,b,c}. In this paper, we describe a new method for construction of elliptic curves over ℚ with reasonably high rank based on a parametrization of rational Diophantine triples. In particular, we construct an elliptic curve induced by a rational Diophantine triple with rank equal to 12, and an infinite family of such curves with rank ≥ 7, which are both the current records for that kind of curves.\",\"PeriodicalId\":55601,\"journal\":{\"name\":\"Glasnik Matematicki\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasnik Matematicki\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.55.2.05\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasnik Matematicki","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.2.05","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

有理数Diophantine三元组是由三个非零有理数A,b,c组成的集合,具有ab+1, ac+1, bc+1是完全平方的性质。我们说椭圆曲线y2 = (ax+1)(bx+1)(cx+1)是由三元{a,b,c}导出的。在有理丢番图三元组参数化的基础上,给出了构造合理高阶椭圆曲线的一种新方法。特别地,我们构造了一条秩为12的有理Diophantine三重体诱导的椭圆曲线,以及秩≥7的椭圆曲线的无限族,这两条曲线都是这类曲线的现有记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High rank elliptic curves induced by rational Diophantine triples
A rational Diophantine triple is a set of three nonzero rational a,b,c with the property that ab+1, ac+1, bc+1 are perfect squares. We say that the elliptic curve y2 = (ax+1)(bx+1)(cx+1) is induced by the triple {a,b,c}. In this paper, we describe a new method for construction of elliptic curves over ℚ with reasonably high rank based on a parametrization of rational Diophantine triples. In particular, we construct an elliptic curve induced by a rational Diophantine triple with rank equal to 12, and an infinite family of such curves with rank ≥ 7, which are both the current records for that kind of curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glasnik Matematicki
Glasnik Matematicki MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.80
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: Glasnik Matematicki publishes original research papers from all fields of pure and applied mathematics. The journal is published semiannually, in June and in December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信