Malih Mehdizadeh-Allaf, Zahra Habibi, J. R. Bruyn, C. DeGroot, H. Peerhossaini
{"title":"剪切作用下活体流体的流变学和生物物理性质:聚囊藻活性悬浮液","authors":"Malih Mehdizadeh-Allaf, Zahra Habibi, J. R. Bruyn, C. DeGroot, H. Peerhossaini","doi":"10.1115/1.4052053","DOIUrl":null,"url":null,"abstract":"In this study, we focus on the response of biological, rheological, and physical properties of dilute suspensions of cyanobacterium Synechocystis sp. CPCC 534 to shear induced by stirring. Experiments were carried out at three different stirring rates in well-controlled conditions, and the results are compared with stationary conditions where only molecular diffusion and cell motility govern the transport phenomena and cell growth. Our results show that the growth, biomass, total chlorophyll, and carotenoid production of Synechocystis sp. under various shear conditions were improved significantly, and the yield was nearly doubled. The viscosity of Synechocystis suspensions, subjected to different shear rates, was also measured. The data showed Newtonian behavior for suspensions at different cell concentrations. Cell concentration showed a noticeable increase in the viscosity of suspensions. However, we observed that this increase was smaller than the one predicted for a suspension of hard spheres. Addition of shear to the cyanobacterium Synechocystis sp. culture demonstrated a positive impact on the produc- tion of value-added products from the micro-organism. The obtained results can be used to improve the bioreactor design for better productivity. [DOI: 10.1115/1.4052053]","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"29 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rheological and Biophysical Properties of Living Fluids Under Shear: Active Suspensions of Synechocystis sp. CPCC 534\",\"authors\":\"Malih Mehdizadeh-Allaf, Zahra Habibi, J. R. Bruyn, C. DeGroot, H. Peerhossaini\",\"doi\":\"10.1115/1.4052053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we focus on the response of biological, rheological, and physical properties of dilute suspensions of cyanobacterium Synechocystis sp. CPCC 534 to shear induced by stirring. Experiments were carried out at three different stirring rates in well-controlled conditions, and the results are compared with stationary conditions where only molecular diffusion and cell motility govern the transport phenomena and cell growth. Our results show that the growth, biomass, total chlorophyll, and carotenoid production of Synechocystis sp. under various shear conditions were improved significantly, and the yield was nearly doubled. The viscosity of Synechocystis suspensions, subjected to different shear rates, was also measured. The data showed Newtonian behavior for suspensions at different cell concentrations. Cell concentration showed a noticeable increase in the viscosity of suspensions. However, we observed that this increase was smaller than the one predicted for a suspension of hard spheres. Addition of shear to the cyanobacterium Synechocystis sp. culture demonstrated a positive impact on the produc- tion of value-added products from the micro-organism. The obtained results can be used to improve the bioreactor design for better productivity. [DOI: 10.1115/1.4052053]\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4052053\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4052053","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Rheological and Biophysical Properties of Living Fluids Under Shear: Active Suspensions of Synechocystis sp. CPCC 534
In this study, we focus on the response of biological, rheological, and physical properties of dilute suspensions of cyanobacterium Synechocystis sp. CPCC 534 to shear induced by stirring. Experiments were carried out at three different stirring rates in well-controlled conditions, and the results are compared with stationary conditions where only molecular diffusion and cell motility govern the transport phenomena and cell growth. Our results show that the growth, biomass, total chlorophyll, and carotenoid production of Synechocystis sp. under various shear conditions were improved significantly, and the yield was nearly doubled. The viscosity of Synechocystis suspensions, subjected to different shear rates, was also measured. The data showed Newtonian behavior for suspensions at different cell concentrations. Cell concentration showed a noticeable increase in the viscosity of suspensions. However, we observed that this increase was smaller than the one predicted for a suspension of hard spheres. Addition of shear to the cyanobacterium Synechocystis sp. culture demonstrated a positive impact on the produc- tion of value-added products from the micro-organism. The obtained results can be used to improve the bioreactor design for better productivity. [DOI: 10.1115/1.4052053]
期刊介绍:
Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes