量子态的概率模拟

Y. Rybakov, T. Kamalov
{"title":"量子态的概率模拟","authors":"Y. Rybakov, T. Kamalov","doi":"10.1117/12.801898","DOIUrl":null,"url":null,"abstract":"To study the properties of the probabilistic bits the geometric approach is preferable. In this approach the projective interpretation of the Hilbert space as the space of rays is used. This model can be employed for simulating Bi-photons, qubits, EPR states and entanglement. The other example concerns the entangled envelope solitons in Kerr dielectric with cubic nonlinearity, where we use two-solitons configurations for modeling the entangled states of photons.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic simulation of quantum states\",\"authors\":\"Y. Rybakov, T. Kamalov\",\"doi\":\"10.1117/12.801898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the properties of the probabilistic bits the geometric approach is preferable. In this approach the projective interpretation of the Hilbert space as the space of rays is used. This model can be employed for simulating Bi-photons, qubits, EPR states and entanglement. The other example concerns the entangled envelope solitons in Kerr dielectric with cubic nonlinearity, where we use two-solitons configurations for modeling the entangled states of photons.\",\"PeriodicalId\":90714,\"journal\":{\"name\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.801898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.801898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研究概率比特的性质,几何方法是比较可取的。在这种方法中,希尔伯特空间的射影解释被用作射线空间。该模型可用于模拟双光子、量子比特、EPR态和纠缠态。另一个例子涉及具有三次非线性的克尔介质中的纠缠包络孤子,其中我们使用双孤子构型来模拟光子的纠缠态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic simulation of quantum states
To study the properties of the probabilistic bits the geometric approach is preferable. In this approach the projective interpretation of the Hilbert space as the space of rays is used. This model can be employed for simulating Bi-photons, qubits, EPR states and entanglement. The other example concerns the entangled envelope solitons in Kerr dielectric with cubic nonlinearity, where we use two-solitons configurations for modeling the entangled states of photons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信