时间分数阶修正Sawada-Kotera方程的Lie对称性分析及行波解

E. Yaşar
{"title":"时间分数阶修正Sawada-Kotera方程的Lie对称性分析及行波解","authors":"E. Yaşar","doi":"10.7212/ZKUFBD.V8I2.625","DOIUrl":null,"url":null,"abstract":"In this paper, we study Lie symmetry analysis of the time fractional fifth-order modified Sawada-Kotera equation (FMSK) with Riemann-Liouville derivative. Applying the adapted the Lie group theory to the equation under study, two dimensional Lie algebra is deduced. Using the obtained nontrivial Lie point symmetry, it is shown that the equation can be converted into a nonlinear fifth order ordinary differential equation of fractional order in the meaning of the Erdelyi-Kober fractional derivative operator. In addition, we construct some exact traveling solutions for the FMSK using the sub-equation method.","PeriodicalId":17742,"journal":{"name":"Karaelmas Science and Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Lie symmetry analysis and traveling wave solutions of time fractional fifth-order modified Sawada-Kotera equation\",\"authors\":\"E. Yaşar\",\"doi\":\"10.7212/ZKUFBD.V8I2.625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study Lie symmetry analysis of the time fractional fifth-order modified Sawada-Kotera equation (FMSK) with Riemann-Liouville derivative. Applying the adapted the Lie group theory to the equation under study, two dimensional Lie algebra is deduced. Using the obtained nontrivial Lie point symmetry, it is shown that the equation can be converted into a nonlinear fifth order ordinary differential equation of fractional order in the meaning of the Erdelyi-Kober fractional derivative operator. In addition, we construct some exact traveling solutions for the FMSK using the sub-equation method.\",\"PeriodicalId\":17742,\"journal\":{\"name\":\"Karaelmas Science and Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Karaelmas Science and Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7212/ZKUFBD.V8I2.625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karaelmas Science and Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7212/ZKUFBD.V8I2.625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了具有Riemann-Liouville导数的时间分数阶修正Sawada-Kotera方程(FMSK)的Lie对称性分析。将李群理论应用于所研究的方程,推导出二维李代数。利用得到的非平凡Lie点对称,证明了在Erdelyi-Kober分数阶导数算子的意义下,该方程可以转化为分数阶的非线性五阶常微分方程。此外,我们还利用子方程方法构造了FMSK的精确旅行解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Lie symmetry analysis and traveling wave solutions of time fractional fifth-order modified Sawada-Kotera equation
In this paper, we study Lie symmetry analysis of the time fractional fifth-order modified Sawada-Kotera equation (FMSK) with Riemann-Liouville derivative. Applying the adapted the Lie group theory to the equation under study, two dimensional Lie algebra is deduced. Using the obtained nontrivial Lie point symmetry, it is shown that the equation can be converted into a nonlinear fifth order ordinary differential equation of fractional order in the meaning of the Erdelyi-Kober fractional derivative operator. In addition, we construct some exact traveling solutions for the FMSK using the sub-equation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信