基于模糊超扭算法和改进空间矢量调制技术的异步双转子风电有功无功直接控制方法

H. Benbouhenni
{"title":"基于模糊超扭算法和改进空间矢量调制技术的异步双转子风电有功无功直接控制方法","authors":"H. Benbouhenni","doi":"10.5829/ijee.2021.12.02.02","DOIUrl":null,"url":null,"abstract":"This work presents a novel direct active and reactive powers command (DARPC) scheme based on fuzzy super twisting algorithms (FSTAs) of an asynchronous generator (ASG) integrated into dual-rotor wind power (DRWP) systems. The DRWP has two sets of blades. So it is more efficient for collecting power from wind in comparison to a traditional wind turbine. The scientific works indicate that a DRWP could extract additional 20-30% power compared to a traditional wind turbine.  The conventional DARPC control scheme using the conventional integral-proportional (PI) regulators (DARPC-PI) has considerable reactive and active power oscillations. In order to guarantee an effective DARPC technique for the ASG-based DRWP system and minimize these oscillations, FSTAs are used in this work. Both DARPC strategies are presented and simulated from two tests using Matlab software. Simulation results showed the effectiveness of the designed DARPC control technique especially on the quality of the provided active and reactive power comparatively to the traditional DARPC control scheme with PI controllers.","PeriodicalId":14542,"journal":{"name":"Iranian Journal of Energy and Environment","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Novel Direct Active and Reactive Power Control Method Using Fuzzy Super Twisting Algorithms and Modified Space Vector Modulation Technique for an Asynchronous Generator-based Dual-rotor Wind Powers\",\"authors\":\"H. Benbouhenni\",\"doi\":\"10.5829/ijee.2021.12.02.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a novel direct active and reactive powers command (DARPC) scheme based on fuzzy super twisting algorithms (FSTAs) of an asynchronous generator (ASG) integrated into dual-rotor wind power (DRWP) systems. The DRWP has two sets of blades. So it is more efficient for collecting power from wind in comparison to a traditional wind turbine. The scientific works indicate that a DRWP could extract additional 20-30% power compared to a traditional wind turbine.  The conventional DARPC control scheme using the conventional integral-proportional (PI) regulators (DARPC-PI) has considerable reactive and active power oscillations. In order to guarantee an effective DARPC technique for the ASG-based DRWP system and minimize these oscillations, FSTAs are used in this work. Both DARPC strategies are presented and simulated from two tests using Matlab software. Simulation results showed the effectiveness of the designed DARPC control technique especially on the quality of the provided active and reactive power comparatively to the traditional DARPC control scheme with PI controllers.\",\"PeriodicalId\":14542,\"journal\":{\"name\":\"Iranian Journal of Energy and Environment\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Energy and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5829/ijee.2021.12.02.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Energy and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ijee.2021.12.02.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于模糊超扭算法(FSTAs)的双转子风力发电系统异步发电机(ASG)直接有功无功指挥(DARPC)方案。DRWP有两组叶片。因此,与传统的风力涡轮机相比,它更有效地收集风能。科学研究表明,与传统的风力涡轮机相比,DRWP可以额外提取20-30%的电力。采用传统积分比例(PI)调节器(DARPC-PI)的传统DARPC控制方案具有相当大的无功和有功振荡。为了保证基于asg的DRWP系统具有有效的DARPC技术并最大限度地减少这些振荡,本工作中使用了fsta。提出了两种DARPC策略,并利用Matlab软件进行了两次测试。仿真结果表明,与传统的带PI控制器的DARPC控制方案相比,所设计的DARPC控制技术在提供的有功和无功功率质量方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Direct Active and Reactive Power Control Method Using Fuzzy Super Twisting Algorithms and Modified Space Vector Modulation Technique for an Asynchronous Generator-based Dual-rotor Wind Powers
This work presents a novel direct active and reactive powers command (DARPC) scheme based on fuzzy super twisting algorithms (FSTAs) of an asynchronous generator (ASG) integrated into dual-rotor wind power (DRWP) systems. The DRWP has two sets of blades. So it is more efficient for collecting power from wind in comparison to a traditional wind turbine. The scientific works indicate that a DRWP could extract additional 20-30% power compared to a traditional wind turbine.  The conventional DARPC control scheme using the conventional integral-proportional (PI) regulators (DARPC-PI) has considerable reactive and active power oscillations. In order to guarantee an effective DARPC technique for the ASG-based DRWP system and minimize these oscillations, FSTAs are used in this work. Both DARPC strategies are presented and simulated from two tests using Matlab software. Simulation results showed the effectiveness of the designed DARPC control technique especially on the quality of the provided active and reactive power comparatively to the traditional DARPC control scheme with PI controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信