粒状雪崩中混合带的演化

Meghan McIntyre, Edward L. Rowe, M. Shearer, J. Gray, A. Thornton
{"title":"粒状雪崩中混合带的演化","authors":"Meghan McIntyre, Edward L. Rowe, M. Shearer, J. Gray, A. Thornton","doi":"10.1093/AMRX/ABM008","DOIUrl":null,"url":null,"abstract":"A nonlinear first-order partial differential equation in two space variables and time describes the process of kinetic sieving in an avalanche, in which larger particles tend to rise to the surface while smaller particles descend, quickly leading to completely segregated layers. The interface between layers is a shock wave satisfying its own nonlinear equation. When the interface becomes vertical, it loses stability, and develops a mixing zone. The mixing zone is described explicitly under idealized initial conditions, and verified with numerical simulation. The problem and its solution are similar to twodimensional Riemann problems for scalar first-order conservation laws; the difference here is that the equation is not scale-invariant, due to shear in the avalanche, an essential ingredient of kinetic sieving.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Evolution of a Mixing Zone in Granular Avalanches\",\"authors\":\"Meghan McIntyre, Edward L. Rowe, M. Shearer, J. Gray, A. Thornton\",\"doi\":\"10.1093/AMRX/ABM008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlinear first-order partial differential equation in two space variables and time describes the process of kinetic sieving in an avalanche, in which larger particles tend to rise to the surface while smaller particles descend, quickly leading to completely segregated layers. The interface between layers is a shock wave satisfying its own nonlinear equation. When the interface becomes vertical, it loses stability, and develops a mixing zone. The mixing zone is described explicitly under idealized initial conditions, and verified with numerical simulation. The problem and its solution are similar to twodimensional Riemann problems for scalar first-order conservation laws; the difference here is that the equation is not scale-invariant, due to shear in the avalanche, an essential ingredient of kinetic sieving.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABM008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABM008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

一个包含两个空间变量和时间变量的非线性一阶偏微分方程描述了雪崩中动力筛分的过程,在这个过程中,较大的颗粒倾向于上升到表面,而较小的颗粒倾向于下降,迅速导致完全分离的层。层间界面是一个满足自身非线性方程的激波。当界面垂直时,它失去稳定性,形成一个混合区。在理想初始条件下对混合区进行了明确描述,并用数值模拟进行了验证。该问题及其解类似于标量一阶守恒律的二维黎曼问题;这里的不同之处在于,由于雪崩中的剪切作用,方程不是尺度不变的,而剪切作用是动力筛分的基本成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of a Mixing Zone in Granular Avalanches
A nonlinear first-order partial differential equation in two space variables and time describes the process of kinetic sieving in an avalanche, in which larger particles tend to rise to the surface while smaller particles descend, quickly leading to completely segregated layers. The interface between layers is a shock wave satisfying its own nonlinear equation. When the interface becomes vertical, it loses stability, and develops a mixing zone. The mixing zone is described explicitly under idealized initial conditions, and verified with numerical simulation. The problem and its solution are similar to twodimensional Riemann problems for scalar first-order conservation laws; the difference here is that the equation is not scale-invariant, due to shear in the avalanche, an essential ingredient of kinetic sieving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信