B. Al-Enezi, Peiwu Liu, Hai Liu, K. Kanneganti, S. Aloun, Sultan Al-Harbi, A. Al-Ibrahim
{"title":"具有可降解纤维的单相缓速酸体系释放了北科威特Tuba地层的生产潜力","authors":"B. Al-Enezi, Peiwu Liu, Hai Liu, K. Kanneganti, S. Aloun, Sultan Al-Harbi, A. Al-Ibrahim","doi":"10.2118/197201-ms","DOIUrl":null,"url":null,"abstract":"\n A recent study showed that Tuba reservoir, a limestone-rich formation, has the highest oil in-place of all upcoming reservoirs in North Kuwait. This tight formation has three main layers - Tuba Upper (TU), Tuba Middle (TM), and Tuba Lower (TL) with several reservoir units alternating with non-pay intervals. The reservoir units contain significant proven oil reserves; however, production performance after conventional acid fracturing treatments has been historically subpar. As part of new development plan, two horizontal wells, one in TU and one in TL were drilled to evaluate the production potential of a new completion strategy and technologies.\n This paper presents one such technology, a single-phase retarded acid system used as a pilot project study. In contrast with previous conventional emulsified acid systems, the single-phase retarded acid minimized tubing friction, thus enabling high pumping rates for the entire treatment. Alternating with the acid system, a viscoelastic surfactant-based leakoff control fluid system allowed the acid stages to reach deeper into the formation. To aid, degradable fiber technology was pumped in several stages to achieve near-wellbore diversion and further control leakoff into large natural fractures, thus improving the stimulated reservoir volume. These fibers are designed to completely degrade with time and temperature after the treatment. Delivery of the complex acid fracturing treatment was optimized in real time for each stage based on bottomhole pressure trend and response.\n Combining a new single-phase retarded acid system with chemical diversion technology has proved to be effective in maximizing lateral coverage and etched fracture half-length. Post-treatment evaluation of TU horizontal well revealed the initial production was as much as 150% higher than offset vertical wells after conventional treatments with gelled acid and as high as 100% higher than a previous multistage horizontal well treated with emulsified acid. The TL horizontal well was just put into production recently and is showing encouraging results considering the lower reservoir quality compared to TU formation.\n The success of this technique and technical combination delivered breakthrough results for this region and has engaged new interest in developing the Tuba reservoir.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Phase Retarded Acid System with Degradable Fibers Unlocks Production Potential in Tuba Formation, North Kuwait\",\"authors\":\"B. Al-Enezi, Peiwu Liu, Hai Liu, K. Kanneganti, S. Aloun, Sultan Al-Harbi, A. Al-Ibrahim\",\"doi\":\"10.2118/197201-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A recent study showed that Tuba reservoir, a limestone-rich formation, has the highest oil in-place of all upcoming reservoirs in North Kuwait. This tight formation has three main layers - Tuba Upper (TU), Tuba Middle (TM), and Tuba Lower (TL) with several reservoir units alternating with non-pay intervals. The reservoir units contain significant proven oil reserves; however, production performance after conventional acid fracturing treatments has been historically subpar. As part of new development plan, two horizontal wells, one in TU and one in TL were drilled to evaluate the production potential of a new completion strategy and technologies.\\n This paper presents one such technology, a single-phase retarded acid system used as a pilot project study. In contrast with previous conventional emulsified acid systems, the single-phase retarded acid minimized tubing friction, thus enabling high pumping rates for the entire treatment. Alternating with the acid system, a viscoelastic surfactant-based leakoff control fluid system allowed the acid stages to reach deeper into the formation. To aid, degradable fiber technology was pumped in several stages to achieve near-wellbore diversion and further control leakoff into large natural fractures, thus improving the stimulated reservoir volume. These fibers are designed to completely degrade with time and temperature after the treatment. Delivery of the complex acid fracturing treatment was optimized in real time for each stage based on bottomhole pressure trend and response.\\n Combining a new single-phase retarded acid system with chemical diversion technology has proved to be effective in maximizing lateral coverage and etched fracture half-length. Post-treatment evaluation of TU horizontal well revealed the initial production was as much as 150% higher than offset vertical wells after conventional treatments with gelled acid and as high as 100% higher than a previous multistage horizontal well treated with emulsified acid. The TL horizontal well was just put into production recently and is showing encouraging results considering the lower reservoir quality compared to TU formation.\\n The success of this technique and technical combination delivered breakthrough results for this region and has engaged new interest in developing the Tuba reservoir.\",\"PeriodicalId\":11061,\"journal\":{\"name\":\"Day 1 Mon, November 11, 2019\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, November 11, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197201-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 11, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197201-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single Phase Retarded Acid System with Degradable Fibers Unlocks Production Potential in Tuba Formation, North Kuwait
A recent study showed that Tuba reservoir, a limestone-rich formation, has the highest oil in-place of all upcoming reservoirs in North Kuwait. This tight formation has three main layers - Tuba Upper (TU), Tuba Middle (TM), and Tuba Lower (TL) with several reservoir units alternating with non-pay intervals. The reservoir units contain significant proven oil reserves; however, production performance after conventional acid fracturing treatments has been historically subpar. As part of new development plan, two horizontal wells, one in TU and one in TL were drilled to evaluate the production potential of a new completion strategy and technologies.
This paper presents one such technology, a single-phase retarded acid system used as a pilot project study. In contrast with previous conventional emulsified acid systems, the single-phase retarded acid minimized tubing friction, thus enabling high pumping rates for the entire treatment. Alternating with the acid system, a viscoelastic surfactant-based leakoff control fluid system allowed the acid stages to reach deeper into the formation. To aid, degradable fiber technology was pumped in several stages to achieve near-wellbore diversion and further control leakoff into large natural fractures, thus improving the stimulated reservoir volume. These fibers are designed to completely degrade with time and temperature after the treatment. Delivery of the complex acid fracturing treatment was optimized in real time for each stage based on bottomhole pressure trend and response.
Combining a new single-phase retarded acid system with chemical diversion technology has proved to be effective in maximizing lateral coverage and etched fracture half-length. Post-treatment evaluation of TU horizontal well revealed the initial production was as much as 150% higher than offset vertical wells after conventional treatments with gelled acid and as high as 100% higher than a previous multistage horizontal well treated with emulsified acid. The TL horizontal well was just put into production recently and is showing encouraging results considering the lower reservoir quality compared to TU formation.
The success of this technique and technical combination delivered breakthrough results for this region and has engaged new interest in developing the Tuba reservoir.