R. S. Shinde
求助PDF
{"title":"(E)-3-(4-氯苯基)-1-(4-甲氧基苯基)- 2-en-1-one的超声辅助合成、分子结构、紫外可见配位、MEP和Mulliken电荷研究:实验和DFT相关性","authors":"R. S. Shinde","doi":"10.13005/MSRI/180110","DOIUrl":null,"url":null,"abstract":"Present investigation deals with the synthesis and density functional theory study (DFT) of a chalcone derivative; (E)-3-(4-chlorophenyl)-1-(4methoxyphenyl)prop-2-en-1-one (CPMPP). The synthesis of a CPMPP has been carried out by the reaction of 4-methoxyacetophenone and 4-chlorobenzalehyde in ethanol at 300C under ultrasound irradiation. The structure of a synthesized chalcone is affirmed on the basis of FT-IT, 1H NMR and 13C NMR. The geometry of a CPMPP is optimized by using the density functional theory method at the B3LYP/6-31G(d,p) basis set. The optimized geometrical parameters like bond length and bond angles have been computed. The absorption energies, oscillator strength, and electronic transitions have been derived at the TD-DFT method at the B3LYP/631G(d,p) level of theory for B3LYP/6-31G(d p) optimized geometries. The effect of polarity on the absorption energies is discussed by computing UV-visible results in dichloromethane (DCM). Since theoretically obtained wavenumbers are typically higher than experimental wavenumbers, computed wavenumbers were scaled with a scaling factor, and vibrational assignments were made by comparing experimental wavenumbers to scaled theoretical wavenumbers. Quantum chemical parameters have been determined and examined. Molecular electrostatic potential (MEP) surface plot analysis has been carried out at the same level of theory. Mulliken atomic charge study is also discussed in the present study. CONTACT Rohit S. Shinde chemistry.rss@gmail.com PG Department of Chemistry, Mahatma Gandhi Vidyamandir’s Arts, Science and Commerce College, Manmad, Taluka-Nandgaon, DistrictNashik, India-423104. (Affiliated to Savitribai Phule Pune University, Pune, maharashtra, India. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180110 Article History Received: 23 March 2021 Accepted: 13 April 2021","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"19 1","pages":"86-96"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ultrasound Assisted Synthesis, Molecular Structure,UV-Visible Assignments, MEP and Mulliken Charges Study of (E)-3-(4-chlorophenyl)-1-(4-methoxyphenyl) prop-2-en-1-one: Experimental and DFT Correlational\",\"authors\":\"R. S. Shinde\",\"doi\":\"10.13005/MSRI/180110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present investigation deals with the synthesis and density functional theory study (DFT) of a chalcone derivative; (E)-3-(4-chlorophenyl)-1-(4methoxyphenyl)prop-2-en-1-one (CPMPP). The synthesis of a CPMPP has been carried out by the reaction of 4-methoxyacetophenone and 4-chlorobenzalehyde in ethanol at 300C under ultrasound irradiation. The structure of a synthesized chalcone is affirmed on the basis of FT-IT, 1H NMR and 13C NMR. The geometry of a CPMPP is optimized by using the density functional theory method at the B3LYP/6-31G(d,p) basis set. The optimized geometrical parameters like bond length and bond angles have been computed. The absorption energies, oscillator strength, and electronic transitions have been derived at the TD-DFT method at the B3LYP/631G(d,p) level of theory for B3LYP/6-31G(d p) optimized geometries. The effect of polarity on the absorption energies is discussed by computing UV-visible results in dichloromethane (DCM). Since theoretically obtained wavenumbers are typically higher than experimental wavenumbers, computed wavenumbers were scaled with a scaling factor, and vibrational assignments were made by comparing experimental wavenumbers to scaled theoretical wavenumbers. Quantum chemical parameters have been determined and examined. Molecular electrostatic potential (MEP) surface plot analysis has been carried out at the same level of theory. Mulliken atomic charge study is also discussed in the present study. CONTACT Rohit S. Shinde chemistry.rss@gmail.com PG Department of Chemistry, Mahatma Gandhi Vidyamandir’s Arts, Science and Commerce College, Manmad, Taluka-Nandgaon, DistrictNashik, India-423104. (Affiliated to Savitribai Phule Pune University, Pune, maharashtra, India. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180110 Article History Received: 23 March 2021 Accepted: 13 April 2021\",\"PeriodicalId\":18247,\"journal\":{\"name\":\"Material Science Research India\",\"volume\":\"19 1\",\"pages\":\"86-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science Research India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/MSRI/180110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science Research India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/MSRI/180110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
引用
批量引用
Ultrasound Assisted Synthesis, Molecular Structure,UV-Visible Assignments, MEP and Mulliken Charges Study of (E)-3-(4-chlorophenyl)-1-(4-methoxyphenyl) prop-2-en-1-one: Experimental and DFT Correlational
Present investigation deals with the synthesis and density functional theory study (DFT) of a chalcone derivative; (E)-3-(4-chlorophenyl)-1-(4methoxyphenyl)prop-2-en-1-one (CPMPP). The synthesis of a CPMPP has been carried out by the reaction of 4-methoxyacetophenone and 4-chlorobenzalehyde in ethanol at 300C under ultrasound irradiation. The structure of a synthesized chalcone is affirmed on the basis of FT-IT, 1H NMR and 13C NMR. The geometry of a CPMPP is optimized by using the density functional theory method at the B3LYP/6-31G(d,p) basis set. The optimized geometrical parameters like bond length and bond angles have been computed. The absorption energies, oscillator strength, and electronic transitions have been derived at the TD-DFT method at the B3LYP/631G(d,p) level of theory for B3LYP/6-31G(d p) optimized geometries. The effect of polarity on the absorption energies is discussed by computing UV-visible results in dichloromethane (DCM). Since theoretically obtained wavenumbers are typically higher than experimental wavenumbers, computed wavenumbers were scaled with a scaling factor, and vibrational assignments were made by comparing experimental wavenumbers to scaled theoretical wavenumbers. Quantum chemical parameters have been determined and examined. Molecular electrostatic potential (MEP) surface plot analysis has been carried out at the same level of theory. Mulliken atomic charge study is also discussed in the present study. CONTACT Rohit S. Shinde chemistry.rss@gmail.com PG Department of Chemistry, Mahatma Gandhi Vidyamandir’s Arts, Science and Commerce College, Manmad, Taluka-Nandgaon, DistrictNashik, India-423104. (Affiliated to Savitribai Phule Pune University, Pune, maharashtra, India. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180110 Article History Received: 23 March 2021 Accepted: 13 April 2021