利用长短期记忆法预测第25和26太阳周期

IF 2.2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Xiaohuan Liu, S. Zeng, L. Deng, X. Zeng, S. Zheng
{"title":"利用长短期记忆法预测第25和26太阳周期","authors":"Xiaohuan Liu, S. Zeng, L. Deng, X. Zeng, S. Zheng","doi":"10.1093/pasj/psad029","DOIUrl":null,"url":null,"abstract":"\n Solar activities directly or indirectly affect space missions, geophysical environment, space climate, and human activities. We used the long short-term memory (LSTM) deep learning method to predict the amplitude and peak time of solar cycles (SCs) 25 and 26 by using the monthly relative sunspot number data taken from the National Astronomical Observatory of Japan (NAOJ). The dataset is divided into eight schemes of two to nine slices for training, showing that the five-slice LSTM model with root mean square error of 11.38 is the optimal model. According to the prediction, SC 25 will be about 21$\\%$ stronger than SC 24, with a peak of 135.2 occurring in 2024 April. SC 26 will be similar to SC 25 and reach its peak of 135.0 in 2035 January. Our analysis results indicate that the sunspot data from NAOJ is highly credible and comparable.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":"69 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the 25th and 26th solar cycles using the long short-term memory method\",\"authors\":\"Xiaohuan Liu, S. Zeng, L. Deng, X. Zeng, S. Zheng\",\"doi\":\"10.1093/pasj/psad029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Solar activities directly or indirectly affect space missions, geophysical environment, space climate, and human activities. We used the long short-term memory (LSTM) deep learning method to predict the amplitude and peak time of solar cycles (SCs) 25 and 26 by using the monthly relative sunspot number data taken from the National Astronomical Observatory of Japan (NAOJ). The dataset is divided into eight schemes of two to nine slices for training, showing that the five-slice LSTM model with root mean square error of 11.38 is the optimal model. According to the prediction, SC 25 will be about 21$\\\\%$ stronger than SC 24, with a peak of 135.2 occurring in 2024 April. SC 26 will be similar to SC 25 and reach its peak of 135.0 in 2035 January. Our analysis results indicate that the sunspot data from NAOJ is highly credible and comparable.\",\"PeriodicalId\":20733,\"journal\":{\"name\":\"Publications of the Astronomical Society of Japan\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of Japan\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/pasj/psad029\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/pasj/psad029","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

太阳活动直接或间接地影响空间任务、地球物理环境、空间气候和人类活动。利用日本国家天文台(NAOJ)的月相对黑子数数据,采用长短期记忆(LSTM)深度学习方法预测了太阳周期(SCs) 25和26的振幅和峰值时间。将数据集分成2 ~ 9片的8个方案进行训练,结果表明,均方根误差为11.38的5片LSTM模型是最优模型。根据预测,SC 25将比SC 24强约21%,峰值将在2024年4月达到135.2。SC 26将与SC 25相似,并在2035年1月达到135.0的峰值。我们的分析结果表明,来自NAOJ的太阳黑子数据具有很高的可信度和可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the 25th and 26th solar cycles using the long short-term memory method
Solar activities directly or indirectly affect space missions, geophysical environment, space climate, and human activities. We used the long short-term memory (LSTM) deep learning method to predict the amplitude and peak time of solar cycles (SCs) 25 and 26 by using the monthly relative sunspot number data taken from the National Astronomical Observatory of Japan (NAOJ). The dataset is divided into eight schemes of two to nine slices for training, showing that the five-slice LSTM model with root mean square error of 11.38 is the optimal model. According to the prediction, SC 25 will be about 21$\%$ stronger than SC 24, with a peak of 135.2 occurring in 2024 April. SC 26 will be similar to SC 25 and reach its peak of 135.0 in 2035 January. Our analysis results indicate that the sunspot data from NAOJ is highly credible and comparable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Publications of the Astronomical Society of Japan
Publications of the Astronomical Society of Japan 地学天文-天文与天体物理
CiteScore
4.10
自引率
13.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: Publications of the Astronomical Society of Japan (PASJ) publishes the results of original research in all aspects of astronomy, astrophysics, and fields closely related to them.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信