任意维半经典展开式的递推生成

Cihan Pazarbaşı
{"title":"任意维半经典展开式的递推生成","authors":"Cihan Pazarbaşı","doi":"10.1103/PhysRevD.103.085011","DOIUrl":null,"url":null,"abstract":"We present a recursive procedure, which is based on the small time expansion of the propagator, in order to generate a semi-classical expansion of the \\textit{quantum action} for a quantum mechanical potential in arbitrary dimensions. In the method we use the spectral information emerges from the singularities of the propagator on the complex $t$ plane, which are handled by the $i\\ve$ prescription and basic complex analysis. This feature allows for generalization to higher dimensions. We illustrate the procedure by providing simple examples in non-relativistic quantum mechanics.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recursive generation of the semiclassical expansion in arbitrary dimension\",\"authors\":\"Cihan Pazarbaşı\",\"doi\":\"10.1103/PhysRevD.103.085011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a recursive procedure, which is based on the small time expansion of the propagator, in order to generate a semi-classical expansion of the \\\\textit{quantum action} for a quantum mechanical potential in arbitrary dimensions. In the method we use the spectral information emerges from the singularities of the propagator on the complex $t$ plane, which are handled by the $i\\\\ve$ prescription and basic complex analysis. This feature allows for generalization to higher dimensions. We illustrate the procedure by providing simple examples in non-relativistic quantum mechanics.\",\"PeriodicalId\":8443,\"journal\":{\"name\":\"arXiv: High Energy Physics - Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevD.103.085011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevD.103.085011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个基于传播子的小时间展开式的递归过程,以生成任意维量子力学势的\textit{量子作用}的半经典展开式。该方法利用复$t$平面上传播子的奇异性产生的谱信息,通过$i\ve$公式和基本复分析处理。这个特性允许将其推广到更高的维度。我们通过提供非相对论性量子力学中的简单例子来说明这个过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive generation of the semiclassical expansion in arbitrary dimension
We present a recursive procedure, which is based on the small time expansion of the propagator, in order to generate a semi-classical expansion of the \textit{quantum action} for a quantum mechanical potential in arbitrary dimensions. In the method we use the spectral information emerges from the singularities of the propagator on the complex $t$ plane, which are handled by the $i\ve$ prescription and basic complex analysis. This feature allows for generalization to higher dimensions. We illustrate the procedure by providing simple examples in non-relativistic quantum mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信