多维模型参数不确定性下实物期权的蒙特卡罗方法

Ankush Agarwal, C. Ewald, Yihan Zou
{"title":"多维模型参数不确定性下实物期权的蒙特卡罗方法","authors":"Ankush Agarwal, C. Ewald, Yihan Zou","doi":"10.2139/ssrn.3549891","DOIUrl":null,"url":null,"abstract":"In this article we study the evaluation of American options with stochastic volatility models and the optimal fish harvesting decision with stochastic convenience yield models, in the presence of drift ambiguity. From the perspective of an ambiguity averse agent, we transfer the problem to the solution of a reflected backward stochastic differential equations (RBSDE) and prove the uniform Lipschitz continuity of the generator. We then propose a numerical algorithm with the theory of RBSDEs and a general stratification technique, and an alternative algorithm without using the theory of RBSDEs. We test the accuracy and convergence of the numerical schemes. By comparing to the one dimensional case, we highlight the importance of the dynamic structure of the agent’s worst case belief. Results also show that the numerical RBSDE algorithm with stratification is more efficient when the optimal generator is attainable.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo methods for real options under parameter uncertainty in multidimensional models\",\"authors\":\"Ankush Agarwal, C. Ewald, Yihan Zou\",\"doi\":\"10.2139/ssrn.3549891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study the evaluation of American options with stochastic volatility models and the optimal fish harvesting decision with stochastic convenience yield models, in the presence of drift ambiguity. From the perspective of an ambiguity averse agent, we transfer the problem to the solution of a reflected backward stochastic differential equations (RBSDE) and prove the uniform Lipschitz continuity of the generator. We then propose a numerical algorithm with the theory of RBSDEs and a general stratification technique, and an alternative algorithm without using the theory of RBSDEs. We test the accuracy and convergence of the numerical schemes. By comparing to the one dimensional case, we highlight the importance of the dynamic structure of the agent’s worst case belief. Results also show that the numerical RBSDE algorithm with stratification is more efficient when the optimal generator is attainable.\",\"PeriodicalId\":11465,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3549891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3549891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了随机波动率模型下的美式期权评估和随机便利收益模型下存在漂移模糊的最优捕捞决策问题。从不确定性规避主体的角度出发,我们将问题转化为一个反射倒向随机微分方程(RBSDE)的解,并证明了发生器的一致Lipschitz连续性。然后,我们提出了一种基于RBSDEs理论和一般分层技术的数值算法,以及一种不使用RBSDEs理论的替代算法。我们检验了数值格式的准确性和收敛性。通过与一维情况的比较,我们强调了主体最坏情况信念动态结构的重要性。结果还表明,在可获得最优生成器的情况下,分层的数值RBSDE算法效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monte Carlo methods for real options under parameter uncertainty in multidimensional models
In this article we study the evaluation of American options with stochastic volatility models and the optimal fish harvesting decision with stochastic convenience yield models, in the presence of drift ambiguity. From the perspective of an ambiguity averse agent, we transfer the problem to the solution of a reflected backward stochastic differential equations (RBSDE) and prove the uniform Lipschitz continuity of the generator. We then propose a numerical algorithm with the theory of RBSDEs and a general stratification technique, and an alternative algorithm without using the theory of RBSDEs. We test the accuracy and convergence of the numerical schemes. By comparing to the one dimensional case, we highlight the importance of the dynamic structure of the agent’s worst case belief. Results also show that the numerical RBSDE algorithm with stratification is more efficient when the optimal generator is attainable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信