求解充分线性互补问题的高阶预测校正方法的复杂性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
J. Stoer, Martin Wechs
{"title":"求解充分线性互补问题的高阶预测校正方法的复杂性","authors":"J. Stoer, Martin Wechs","doi":"10.1080/10556789808805721","DOIUrl":null,"url":null,"abstract":"Recently the authors of this paper and S. Mizuno described a class of infeasible-interiorpoint methods for solving linear complementarity problems that are sufficient in the sense of R.W. Cottle, J.-S. Pang and V. Venkateswaran (1989) Sufficient matrices and the linear complementarity problemLinear Algebra AppL 114/115,231-249. It was shown that these methods converge superlinearly with an arbitrarily high order even for degenerate problems or problems without strictly complementary solution. In this paper the complexity of these methods is investigated. It is shown that all these methods, if started appropriately, need predictor-corrector steps to find an e-solution, and only steps, if the problem has strictly interior points. HereK is the sufficiency parameter of the complementarity problem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The complexity of high-order predictor-corrector methods for solving sufficient linear complementarity problems\",\"authors\":\"J. Stoer, Martin Wechs\",\"doi\":\"10.1080/10556789808805721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently the authors of this paper and S. Mizuno described a class of infeasible-interiorpoint methods for solving linear complementarity problems that are sufficient in the sense of R.W. Cottle, J.-S. Pang and V. Venkateswaran (1989) Sufficient matrices and the linear complementarity problemLinear Algebra AppL 114/115,231-249. It was shown that these methods converge superlinearly with an arbitrarily high order even for degenerate problems or problems without strictly complementary solution. In this paper the complexity of these methods is investigated. It is shown that all these methods, if started appropriately, need predictor-corrector steps to find an e-solution, and only steps, if the problem has strictly interior points. HereK is the sufficiency parameter of the complementarity problem.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10556789808805721\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789808805721","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

最近,本文的作者和S. Mizuno描述了一类求解线性互补问题的不可行内点方法,这些方法在R.W. Cottle, J.-S.意义上是充分的。彭文华(1989)充分矩阵与线性互补问题。线性代数,vol . 14(1): 1- 3。证明了这些方法即使对于退化问题或无严格互补解的问题也具有任意高阶的超线性收敛性。本文研究了这些方法的复杂性。结果表明,所有这些方法,如果适当地开始,都需要预测校正步骤来找到e解,如果问题有严格的内点,则只需步骤。这里,ek是互补问题的充分性参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complexity of high-order predictor-corrector methods for solving sufficient linear complementarity problems
Recently the authors of this paper and S. Mizuno described a class of infeasible-interiorpoint methods for solving linear complementarity problems that are sufficient in the sense of R.W. Cottle, J.-S. Pang and V. Venkateswaran (1989) Sufficient matrices and the linear complementarity problemLinear Algebra AppL 114/115,231-249. It was shown that these methods converge superlinearly with an arbitrarily high order even for degenerate problems or problems without strictly complementary solution. In this paper the complexity of these methods is investigated. It is shown that all these methods, if started appropriately, need predictor-corrector steps to find an e-solution, and only steps, if the problem has strictly interior points. HereK is the sufficiency parameter of the complementarity problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信