一个几乎完全可预测的过程,没有最佳预测器

Dariusz Kalociński, Tomasz Steifer
{"title":"一个几乎完全可预测的过程,没有最佳预测器","authors":"Dariusz Kalociński, Tomasz Steifer","doi":"10.1109/ISIT.2019.8849587","DOIUrl":null,"url":null,"abstract":"A novel kind of a negative result is presented for the problem of computable prediction. A non-stationary binary stochastic process is constructed for which almost surely no effective method of prediction achieves the infimum of prediction errors defined as the normalized Hamming distance between the sequence of predictions and the realization of the process. Yet it is shown that this process may be effectively predicted almost surely up to an arbitrarily small error since the infimum of prediction errors is zero.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"11 1","pages":"2504-2508"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Almost Perfectly Predictable Process with No Optimal Predictor\",\"authors\":\"Dariusz Kalociński, Tomasz Steifer\",\"doi\":\"10.1109/ISIT.2019.8849587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel kind of a negative result is presented for the problem of computable prediction. A non-stationary binary stochastic process is constructed for which almost surely no effective method of prediction achieves the infimum of prediction errors defined as the normalized Hamming distance between the sequence of predictions and the realization of the process. Yet it is shown that this process may be effectively predicted almost surely up to an arbitrarily small error since the infimum of prediction errors is zero.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"11 1\",\"pages\":\"2504-2508\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对可计算预测问题,提出了一种新的否定结果。构造了一个非平稳二元随机过程,对于该过程,几乎可以肯定没有有效的预测方法能够达到预测误差的最小值,预测误差的最小值定义为预测序列与过程实现之间的归一化汉明距离。然而,由于预测误差的最小值为零,这一过程几乎可以肯定地有效预测到任意小的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Almost Perfectly Predictable Process with No Optimal Predictor
A novel kind of a negative result is presented for the problem of computable prediction. A non-stationary binary stochastic process is constructed for which almost surely no effective method of prediction achieves the infimum of prediction errors defined as the normalized Hamming distance between the sequence of predictions and the realization of the process. Yet it is shown that this process may be effectively predicted almost surely up to an arbitrarily small error since the infimum of prediction errors is zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信