首尔大学因果关系实验室@因果新闻语料库2022:通过词性标注的数据增强来检测因果关系

Juhyeon Kim, Yesong Choe, Sanghack Lee
{"title":"首尔大学因果关系实验室@因果新闻语料库2022:通过词性标注的数据增强来检测因果关系","authors":"Juhyeon Kim, Yesong Choe, Sanghack Lee","doi":"10.18653/v1/2022.case-1.6","DOIUrl":null,"url":null,"abstract":"Finding causal relations in texts has been a challenge since it requires methods ranging from defining event ontologies to developing proper algorithmic approaches. In this paper, we developed a framework which classifies whether a given sentence contains a causal event.As our approach, we exploited an external corpus that has causal labels to overcome the small size of the original corpus (Causal News Corpus) provided by task organizers.Further, we employed a data augmentation technique utilizing Part-Of-Speech (POS) based on our observation that some parts of speech are more (or less) relevant to causality. Our approach especially improved the recall of detecting causal events in sentences.","PeriodicalId":80307,"journal":{"name":"The Case manager","volume":"25 1","pages":"44-49"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SNU-Causality Lab @ Causal News Corpus 2022: Detecting Causality by Data Augmentation via Part-of-Speech tagging\",\"authors\":\"Juhyeon Kim, Yesong Choe, Sanghack Lee\",\"doi\":\"10.18653/v1/2022.case-1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding causal relations in texts has been a challenge since it requires methods ranging from defining event ontologies to developing proper algorithmic approaches. In this paper, we developed a framework which classifies whether a given sentence contains a causal event.As our approach, we exploited an external corpus that has causal labels to overcome the small size of the original corpus (Causal News Corpus) provided by task organizers.Further, we employed a data augmentation technique utilizing Part-Of-Speech (POS) based on our observation that some parts of speech are more (or less) relevant to causality. Our approach especially improved the recall of detecting causal events in sentences.\",\"PeriodicalId\":80307,\"journal\":{\"name\":\"The Case manager\",\"volume\":\"25 1\",\"pages\":\"44-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Case manager\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.case-1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Case manager","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.case-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在文本中寻找因果关系一直是一个挑战,因为它需要从定义事件本体到开发适当的算法方法等各种方法。在本文中,我们开发了一个框架来分类一个给定的句子是否包含因果事件。作为我们的方法,我们利用了一个具有因果标签的外部语料库来克服任务组织者提供的原始语料库(因果新闻语料库)的小尺寸。此外,基于我们对词性与因果关系或多或少相关的观察,我们采用了一种利用词性(POS)的数据增强技术。我们的方法特别提高了在句子中发现因果事件的记忆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SNU-Causality Lab @ Causal News Corpus 2022: Detecting Causality by Data Augmentation via Part-of-Speech tagging
Finding causal relations in texts has been a challenge since it requires methods ranging from defining event ontologies to developing proper algorithmic approaches. In this paper, we developed a framework which classifies whether a given sentence contains a causal event.As our approach, we exploited an external corpus that has causal labels to overcome the small size of the original corpus (Causal News Corpus) provided by task organizers.Further, we employed a data augmentation technique utilizing Part-Of-Speech (POS) based on our observation that some parts of speech are more (or less) relevant to causality. Our approach especially improved the recall of detecting causal events in sentences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信