{"title":"长波区色散方程的时间积分器","authors":"M. Calvo, F. Rousset, Katharina Schratz","doi":"10.1090/mcom/3745","DOIUrl":null,"url":null,"abstract":"We introduce a novel class of time integrators for dispersive equations which allow us to reproduce the dynamics of the solution from the classical $ \\varepsilon = 1$ up to long wave limit regime $ \\varepsilon \\ll 1 $ on the natural time scale of the PDE $t= \\mathcal{O}(\\frac{1}{\\varepsilon})$. Most notably our new schemes converge with rates at order $\\tau \\varepsilon$ over long times $t= \\frac{1}{\\varepsilon}$.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"1 1","pages":"2197-2214"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time integrators for dispersive equations in the long wave regime\",\"authors\":\"M. Calvo, F. Rousset, Katharina Schratz\",\"doi\":\"10.1090/mcom/3745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel class of time integrators for dispersive equations which allow us to reproduce the dynamics of the solution from the classical $ \\\\varepsilon = 1$ up to long wave limit regime $ \\\\varepsilon \\\\ll 1 $ on the natural time scale of the PDE $t= \\\\mathcal{O}(\\\\frac{1}{\\\\varepsilon})$. Most notably our new schemes converge with rates at order $\\\\tau \\\\varepsilon$ over long times $t= \\\\frac{1}{\\\\varepsilon}$.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"1 1\",\"pages\":\"2197-2214\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time integrators for dispersive equations in the long wave regime
We introduce a novel class of time integrators for dispersive equations which allow us to reproduce the dynamics of the solution from the classical $ \varepsilon = 1$ up to long wave limit regime $ \varepsilon \ll 1 $ on the natural time scale of the PDE $t= \mathcal{O}(\frac{1}{\varepsilon})$. Most notably our new schemes converge with rates at order $\tau \varepsilon$ over long times $t= \frac{1}{\varepsilon}$.