M. Hoogeboom, Y. Adulyasak, W. Dullaert, Patrick Jaillet
{"title":"具有时间窗分配的鲁棒车辆路径问题","authors":"M. Hoogeboom, Y. Adulyasak, W. Dullaert, Patrick Jaillet","doi":"10.1287/trsc.2020.1013","DOIUrl":null,"url":null,"abstract":"In practice, there are several applications in which logistics service providers determine the service time windows at the customers, for example, in parcel delivery, retail, and repair services. These companies face uncertain travel times and service times that have to be taken into account when determining the time windows and routes prior to departure. The objective of the proposed robust vehicle routing problem with time window assignments (RVRP-TWA) is to simultaneously determine routes and time window assignments such that the expected travel time and the risk of violating the time windows are minimized. We assume that the travel time probability distributions are not completely known but that some statistics, such as the mean, minimum, and maximum, can be estimated. We extend the robust framework based on the requirements’ violation index, which was originally developed for the case where the specific requirements (time windows) are given as inputs, to the case where they are also part of the decisions. The subproblem of finding the optimal time window assignment for the customers in a given route is shown to be convex, and the subgradients can be derived. The RVRP-TWA is solved by iteratively generating subgradient cuts from the subproblem that are added in a branch-and-cut fashion. Experiments address the performance of the proposed solution approach and examine the trade-off between expected travel time and risk of violating the time windows.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"64 1","pages":"395-413"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The Robust Vehicle Routing Problem with Time Window Assignments\",\"authors\":\"M. Hoogeboom, Y. Adulyasak, W. Dullaert, Patrick Jaillet\",\"doi\":\"10.1287/trsc.2020.1013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practice, there are several applications in which logistics service providers determine the service time windows at the customers, for example, in parcel delivery, retail, and repair services. These companies face uncertain travel times and service times that have to be taken into account when determining the time windows and routes prior to departure. The objective of the proposed robust vehicle routing problem with time window assignments (RVRP-TWA) is to simultaneously determine routes and time window assignments such that the expected travel time and the risk of violating the time windows are minimized. We assume that the travel time probability distributions are not completely known but that some statistics, such as the mean, minimum, and maximum, can be estimated. We extend the robust framework based on the requirements’ violation index, which was originally developed for the case where the specific requirements (time windows) are given as inputs, to the case where they are also part of the decisions. The subproblem of finding the optimal time window assignment for the customers in a given route is shown to be convex, and the subgradients can be derived. The RVRP-TWA is solved by iteratively generating subgradient cuts from the subproblem that are added in a branch-and-cut fashion. Experiments address the performance of the proposed solution approach and examine the trade-off between expected travel time and risk of violating the time windows.\",\"PeriodicalId\":23247,\"journal\":{\"name\":\"Transp. Sci.\",\"volume\":\"64 1\",\"pages\":\"395-413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transp. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2020.1013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2020.1013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Robust Vehicle Routing Problem with Time Window Assignments
In practice, there are several applications in which logistics service providers determine the service time windows at the customers, for example, in parcel delivery, retail, and repair services. These companies face uncertain travel times and service times that have to be taken into account when determining the time windows and routes prior to departure. The objective of the proposed robust vehicle routing problem with time window assignments (RVRP-TWA) is to simultaneously determine routes and time window assignments such that the expected travel time and the risk of violating the time windows are minimized. We assume that the travel time probability distributions are not completely known but that some statistics, such as the mean, minimum, and maximum, can be estimated. We extend the robust framework based on the requirements’ violation index, which was originally developed for the case where the specific requirements (time windows) are given as inputs, to the case where they are also part of the decisions. The subproblem of finding the optimal time window assignment for the customers in a given route is shown to be convex, and the subgradients can be derived. The RVRP-TWA is solved by iteratively generating subgradient cuts from the subproblem that are added in a branch-and-cut fashion. Experiments address the performance of the proposed solution approach and examine the trade-off between expected travel time and risk of violating the time windows.