Atlas:关于使用扩展关系结构的空间关键字组查询的表达式

Ahmed R. Mahmood, Walid G. Aref, Ahmed M. Aly, Mingjie Tang
{"title":"Atlas:关于使用扩展关系结构的空间关键字组查询的表达式","authors":"Ahmed R. Mahmood, Walid G. Aref, Ahmed M. Aly, Mingjie Tang","doi":"10.1145/2996913.2996987","DOIUrl":null,"url":null,"abstract":"The popularity of GPS-enabled cellular devices introduced numerous applications, e.g., social networks, micro-blogs, and crowd-powered reviews. These applications produce large amounts of geo-tagged textual data that need to be processed and queried. Nowadays, many complex spatio-textual operators and their matching complex indexing structures are being proposed in the literature to process this spatio-textual data. For example, there exist several complex variations of the spatio-textual group queries that retrieve groups of objects that collectively satisfy certain spatial and textual criteria. However, having complex operators is against the spirit of SQL and relational algebra. In contrast to these complex spatio-textual operators, in relational algebra, simple relational operators are offered, e.g., relational selects, projects, order by, and group by, that are composable to form more complex queries. In this paper, we introduce Atlas, an SQL extension to express complex spatial-keyword group queries. Atlas follows the philosophy of SQL and relational algebra in that it uses simple declarative spatial and textual building-block operators and predicates to extend SQL. Not only that Atlas can represent spatio-textual group queries from the literature, but also it can compose other important queries, e.g., retrieve spatio-textual groups from subsets of object datasets where the selected subset satisfies user-defined relational predicates and the groups of close-by objects contain miss-spelled keywords. We demonstrate that Atlas is able to represent a wide range of spatial-keyword queries that existing indexes and algorithms would not be able to address. The building- block paradigm adopted by Atlas creates room for query optimization, where multiple query execution plans can be formed.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Atlas: on the expression of spatial-keyword group queries using extended relational constructs\",\"authors\":\"Ahmed R. Mahmood, Walid G. Aref, Ahmed M. Aly, Mingjie Tang\",\"doi\":\"10.1145/2996913.2996987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of GPS-enabled cellular devices introduced numerous applications, e.g., social networks, micro-blogs, and crowd-powered reviews. These applications produce large amounts of geo-tagged textual data that need to be processed and queried. Nowadays, many complex spatio-textual operators and their matching complex indexing structures are being proposed in the literature to process this spatio-textual data. For example, there exist several complex variations of the spatio-textual group queries that retrieve groups of objects that collectively satisfy certain spatial and textual criteria. However, having complex operators is against the spirit of SQL and relational algebra. In contrast to these complex spatio-textual operators, in relational algebra, simple relational operators are offered, e.g., relational selects, projects, order by, and group by, that are composable to form more complex queries. In this paper, we introduce Atlas, an SQL extension to express complex spatial-keyword group queries. Atlas follows the philosophy of SQL and relational algebra in that it uses simple declarative spatial and textual building-block operators and predicates to extend SQL. Not only that Atlas can represent spatio-textual group queries from the literature, but also it can compose other important queries, e.g., retrieve spatio-textual groups from subsets of object datasets where the selected subset satisfies user-defined relational predicates and the groups of close-by objects contain miss-spelled keywords. We demonstrate that Atlas is able to represent a wide range of spatial-keyword queries that existing indexes and algorithms would not be able to address. The building- block paradigm adopted by Atlas creates room for query optimization, where multiple query execution plans can be formed.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

支持gps功能的蜂窝设备的普及引入了许多应用,例如,社交网络、微博客和大众评论。这些应用程序产生大量需要处理和查询的地理标记文本数据。目前,文献中提出了许多复杂的空间文本操作符及其匹配的复杂索引结构来处理这些空间文本数据。例如,存在一些复杂的空间文本组查询变体,它们检索总体上满足某些空间和文本标准的对象组。然而,使用复杂的操作符违背了SQL和关系代数的精神。与这些复杂的空间文本运算符相比,在关系代数中,提供了简单的关系运算符,例如关系选择、项目、order by和group by,它们可以组合成更复杂的查询。本文介绍了Atlas,一个用于表达复杂空间关键字组查询的SQL扩展。Atlas遵循SQL和关系代数的哲学,它使用简单的声明性空间和文本构建块操作符和谓词来扩展SQL。Atlas不仅可以表示文献中的空间文本组查询,还可以组成其他重要的查询,例如,从对象数据集的子集中检索空间文本组,其中所选子集满足用户定义的关系谓词,并且邻近对象组包含拼写错误的关键字。我们证明了Atlas能够表示现有索引和算法无法解决的广泛的空间关键字查询。Atlas采用的构建块范例为查询优化创造了空间,其中可以形成多个查询执行计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atlas: on the expression of spatial-keyword group queries using extended relational constructs
The popularity of GPS-enabled cellular devices introduced numerous applications, e.g., social networks, micro-blogs, and crowd-powered reviews. These applications produce large amounts of geo-tagged textual data that need to be processed and queried. Nowadays, many complex spatio-textual operators and their matching complex indexing structures are being proposed in the literature to process this spatio-textual data. For example, there exist several complex variations of the spatio-textual group queries that retrieve groups of objects that collectively satisfy certain spatial and textual criteria. However, having complex operators is against the spirit of SQL and relational algebra. In contrast to these complex spatio-textual operators, in relational algebra, simple relational operators are offered, e.g., relational selects, projects, order by, and group by, that are composable to form more complex queries. In this paper, we introduce Atlas, an SQL extension to express complex spatial-keyword group queries. Atlas follows the philosophy of SQL and relational algebra in that it uses simple declarative spatial and textual building-block operators and predicates to extend SQL. Not only that Atlas can represent spatio-textual group queries from the literature, but also it can compose other important queries, e.g., retrieve spatio-textual groups from subsets of object datasets where the selected subset satisfies user-defined relational predicates and the groups of close-by objects contain miss-spelled keywords. We demonstrate that Atlas is able to represent a wide range of spatial-keyword queries that existing indexes and algorithms would not be able to address. The building- block paradigm adopted by Atlas creates room for query optimization, where multiple query execution plans can be formed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信