基于卷积神经网络和双谱分析的环境声音分类

Katsumi Hirata, T. Kato, R. Oshima
{"title":"基于卷积神经网络和双谱分析的环境声音分类","authors":"Katsumi Hirata, T. Kato, R. Oshima","doi":"10.1109/ISPACS48206.2019.8986304","DOIUrl":null,"url":null,"abstract":"To realize a useful acoustic environmental recognition system, we propose a new method that classifies sound signals using a slice bispectrogram, which is a third-order version of a spectrogram. The classified sound was used as input data for a convolutional neural network. We conducted a fundamental classification experiment using UrbanSound8k, which was an open dataset consisting of 10 classes of environmental sounds. Our proposed method gave high accuracy and stability. Furthermore, a relationship between the accuracy and non-Gaussianity of sound signals was confirmed.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"54 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Classification of Environmental Sounds Using Convolutional Neural Network with Bispectral Analysis\",\"authors\":\"Katsumi Hirata, T. Kato, R. Oshima\",\"doi\":\"10.1109/ISPACS48206.2019.8986304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To realize a useful acoustic environmental recognition system, we propose a new method that classifies sound signals using a slice bispectrogram, which is a third-order version of a spectrogram. The classified sound was used as input data for a convolutional neural network. We conducted a fundamental classification experiment using UrbanSound8k, which was an open dataset consisting of 10 classes of environmental sounds. Our proposed method gave high accuracy and stability. Furthermore, a relationship between the accuracy and non-Gaussianity of sound signals was confirmed.\",\"PeriodicalId\":6765,\"journal\":{\"name\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"54 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS48206.2019.8986304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了实现一个有用的声环境识别系统,我们提出了一种新的方法,使用片双谱图对声音信号进行分类,这是一种三阶谱图。分类后的声音作为卷积神经网络的输入数据。我们使用UrbanSound8k进行了一个基本分类实验,UrbanSound8k是一个由10类环境声音组成的开放数据集。该方法精度高,稳定性好。进一步证实了声信号的精度与非高斯性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Environmental Sounds Using Convolutional Neural Network with Bispectral Analysis
To realize a useful acoustic environmental recognition system, we propose a new method that classifies sound signals using a slice bispectrogram, which is a third-order version of a spectrogram. The classified sound was used as input data for a convolutional neural network. We conducted a fundamental classification experiment using UrbanSound8k, which was an open dataset consisting of 10 classes of environmental sounds. Our proposed method gave high accuracy and stability. Furthermore, a relationship between the accuracy and non-Gaussianity of sound signals was confirmed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信