A. Garg, Mika Göös, Pritish Kamath, Dmitry Sokolov
{"title":"单调电路的下界从分辨率","authors":"A. Garg, Mika Göös, Pritish Kamath, Dmitry Sokolov","doi":"10.1145/3188745.3188838","DOIUrl":null,"url":null,"abstract":"For any unsatisfiable CNF formula F that is hard to refute in the Resolution proof system, we show that a gadget-composed version of F is hard to refute in any proof system whose lines are computed by efficient communication protocols—or, equivalently, that a monotone function associated with F has large monotone circuit complexity. Our result extends to monotone real circuits, which yields new lower bounds for the Cutting Planes proof system.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Monotone circuit lower bounds from resolution\",\"authors\":\"A. Garg, Mika Göös, Pritish Kamath, Dmitry Sokolov\",\"doi\":\"10.1145/3188745.3188838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any unsatisfiable CNF formula F that is hard to refute in the Resolution proof system, we show that a gadget-composed version of F is hard to refute in any proof system whose lines are computed by efficient communication protocols—or, equivalently, that a monotone function associated with F has large monotone circuit complexity. Our result extends to monotone real circuits, which yields new lower bounds for the Cutting Planes proof system.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For any unsatisfiable CNF formula F that is hard to refute in the Resolution proof system, we show that a gadget-composed version of F is hard to refute in any proof system whose lines are computed by efficient communication protocols—or, equivalently, that a monotone function associated with F has large monotone circuit complexity. Our result extends to monotone real circuits, which yields new lower bounds for the Cutting Planes proof system.