{"title":"基于深度卷积神经网络的高速滚动轴承故障诊断与故障模式分析","authors":"M. Rathore, S. Harsha","doi":"10.1115/1.4062252","DOIUrl":null,"url":null,"abstract":"\n In this paper, vibration-based fault diagnostics and response classification have been done for defective high-speed cylindrical bearing operating under unbalance rotor conditions. An experimental study has been performed to capture the vibration signature of faulty bearings in the time domain and for different speeds of the unbalanced rotor. Two-dimensional phase trajectories are generated by estimating the time delay and embedding dimension corresponding to vibration signatures. Qualitative analysis involves the implementation of a Deep Convolutional Neural Network (DCNN) utilizing the phase portraits as input to classify the nonlinear vibration responses. Comparison with state-of-art classifiers such as ANN, DNN, and KNN is presented based on classification accuracy values. Thus, the values obtained are 61.12%, 66.62%, 71.85%, and 98.85% for ANN, DNN, KNN, and DCNN, respectively. Hence, the proposed intelligent classification model accurately identifies the dynamic behavior of bearing under unbalanced rotor conditions.","PeriodicalId":52294,"journal":{"name":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","volume":"47 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Diagnostics and Faulty Pattern Analysis of High-Speed Roller Bearings Using Deep Convolutional Neural network\",\"authors\":\"M. Rathore, S. Harsha\",\"doi\":\"10.1115/1.4062252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, vibration-based fault diagnostics and response classification have been done for defective high-speed cylindrical bearing operating under unbalance rotor conditions. An experimental study has been performed to capture the vibration signature of faulty bearings in the time domain and for different speeds of the unbalanced rotor. Two-dimensional phase trajectories are generated by estimating the time delay and embedding dimension corresponding to vibration signatures. Qualitative analysis involves the implementation of a Deep Convolutional Neural Network (DCNN) utilizing the phase portraits as input to classify the nonlinear vibration responses. Comparison with state-of-art classifiers such as ANN, DNN, and KNN is presented based on classification accuracy values. Thus, the values obtained are 61.12%, 66.62%, 71.85%, and 98.85% for ANN, DNN, KNN, and DCNN, respectively. Hence, the proposed intelligent classification model accurately identifies the dynamic behavior of bearing under unbalanced rotor conditions.\",\"PeriodicalId\":52294,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Fault Diagnostics and Faulty Pattern Analysis of High-Speed Roller Bearings Using Deep Convolutional Neural network
In this paper, vibration-based fault diagnostics and response classification have been done for defective high-speed cylindrical bearing operating under unbalance rotor conditions. An experimental study has been performed to capture the vibration signature of faulty bearings in the time domain and for different speeds of the unbalanced rotor. Two-dimensional phase trajectories are generated by estimating the time delay and embedding dimension corresponding to vibration signatures. Qualitative analysis involves the implementation of a Deep Convolutional Neural Network (DCNN) utilizing the phase portraits as input to classify the nonlinear vibration responses. Comparison with state-of-art classifiers such as ANN, DNN, and KNN is presented based on classification accuracy values. Thus, the values obtained are 61.12%, 66.62%, 71.85%, and 98.85% for ANN, DNN, KNN, and DCNN, respectively. Hence, the proposed intelligent classification model accurately identifies the dynamic behavior of bearing under unbalanced rotor conditions.