{"title":"曲率张量二阶协变导数的一些新恒等式","authors":"M. Maksimović, M. Stankovic","doi":"10.22190/fumi200930038m","DOIUrl":null,"url":null,"abstract":"In this paper we study the second covariant derivative of Riemannian curvature tensor. Some new identities for the second covariant derivative are given. Namely, identities obtained by cyclic sum with respect to three indices are given. In the first case, two curvature tensor indices and one covariant derivative index participate in the cyclic sum, while in the second case one curvature tensor index and two covariant derivative indices participate in the cyclic sum.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"64 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME NEW IDENTITIES FOR THE SECOND COVARIANT DERIVATIVE OF THE CURVATURE TENSOR\",\"authors\":\"M. Maksimović, M. Stankovic\",\"doi\":\"10.22190/fumi200930038m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the second covariant derivative of Riemannian curvature tensor. Some new identities for the second covariant derivative are given. Namely, identities obtained by cyclic sum with respect to three indices are given. In the first case, two curvature tensor indices and one covariant derivative index participate in the cyclic sum, while in the second case one curvature tensor index and two covariant derivative indices participate in the cyclic sum.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi200930038m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi200930038m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
SOME NEW IDENTITIES FOR THE SECOND COVARIANT DERIVATIVE OF THE CURVATURE TENSOR
In this paper we study the second covariant derivative of Riemannian curvature tensor. Some new identities for the second covariant derivative are given. Namely, identities obtained by cyclic sum with respect to three indices are given. In the first case, two curvature tensor indices and one covariant derivative index participate in the cyclic sum, while in the second case one curvature tensor index and two covariant derivative indices participate in the cyclic sum.