{"title":"过渡金属二硫族化合物边缘的拓扑超导性","authors":"Gang Xu, Jing Wang, Binghai Yan, X. Qi","doi":"10.1103/PhysRevB.90.100505","DOIUrl":null,"url":null,"abstract":"Time-reversal breaking topological superconductors are new states of matter which can support Majorana zero modes at the edge. In this Rapid Communication, we propose a different realization of one-dimensional topological superconductivity and Majorana zero modes. The proposed system consists of a monolayer of transition-metal dichalcogenides M X-2 (M = Mo, W; X = S, Se) on top of a superconducting substrate. Based on first-principles calculations, we show that a zigzag edge of the monolayer M X-2 terminated by a metal atom M has edge states with strong spin-orbit coupling and spontaneous magnetization. By proximity coupling with a superconducting substrate, topological superconductivity can be induced at such an edge. We propose NbS2 as a natural choice of substrate, and estimate the proximity induced superconducting gap based on first-principles calculation and a low energy effective model. As an experimental consequence of our theory, we predict that Majorana zero modes can be detected at the 120 degrees corner of a M X-2 flake in proximity to a superconducting substrate.","PeriodicalId":9375,"journal":{"name":"Bulletin of the American Physical Society","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Topological superconductivity at the edge of transition metal dichalcogenides\",\"authors\":\"Gang Xu, Jing Wang, Binghai Yan, X. Qi\",\"doi\":\"10.1103/PhysRevB.90.100505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-reversal breaking topological superconductors are new states of matter which can support Majorana zero modes at the edge. In this Rapid Communication, we propose a different realization of one-dimensional topological superconductivity and Majorana zero modes. The proposed system consists of a monolayer of transition-metal dichalcogenides M X-2 (M = Mo, W; X = S, Se) on top of a superconducting substrate. Based on first-principles calculations, we show that a zigzag edge of the monolayer M X-2 terminated by a metal atom M has edge states with strong spin-orbit coupling and spontaneous magnetization. By proximity coupling with a superconducting substrate, topological superconductivity can be induced at such an edge. We propose NbS2 as a natural choice of substrate, and estimate the proximity induced superconducting gap based on first-principles calculation and a low energy effective model. As an experimental consequence of our theory, we predict that Majorana zero modes can be detected at the 120 degrees corner of a M X-2 flake in proximity to a superconducting substrate.\",\"PeriodicalId\":9375,\"journal\":{\"name\":\"Bulletin of the American Physical Society\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Physical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevB.90.100505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Physical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.90.100505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topological superconductivity at the edge of transition metal dichalcogenides
Time-reversal breaking topological superconductors are new states of matter which can support Majorana zero modes at the edge. In this Rapid Communication, we propose a different realization of one-dimensional topological superconductivity and Majorana zero modes. The proposed system consists of a monolayer of transition-metal dichalcogenides M X-2 (M = Mo, W; X = S, Se) on top of a superconducting substrate. Based on first-principles calculations, we show that a zigzag edge of the monolayer M X-2 terminated by a metal atom M has edge states with strong spin-orbit coupling and spontaneous magnetization. By proximity coupling with a superconducting substrate, topological superconductivity can be induced at such an edge. We propose NbS2 as a natural choice of substrate, and estimate the proximity induced superconducting gap based on first-principles calculation and a low energy effective model. As an experimental consequence of our theory, we predict that Majorana zero modes can be detected at the 120 degrees corner of a M X-2 flake in proximity to a superconducting substrate.