自行车共享网络的骨架网络提取与分析

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Kanokwan Malang, Shuliang Wang, Yuanyuan Lv, Aniwat Phaphuangwittayakul
{"title":"自行车共享网络的骨架网络提取与分析","authors":"Kanokwan Malang, Shuliang Wang, Yuanyuan Lv, Aniwat Phaphuangwittayakul","doi":"10.4018/ijdwm.2020070108","DOIUrl":null,"url":null,"abstract":"Skeletonnetworkextractionhasbeenadoptedunevenlyintransportationnetworkswhosenodes are always represented as spatial units. In this article, the TPks skeleton network extraction methodisproposedandappliedtobicyclesharingnetworks.Themethodaimstoreducethe networksizewhilepreservingkeytopologiesandspatialfeatures.Theauthorsquantifiedthe importanceofnodesbyanimprovedtopologypotentialalgorithm.Thespatialclusteringallows todetecthightrafficconcentrationsandallocate thenodesofeachclusteraccordingto their spatialdistribution.Then,theskeletonnetworkisconstructedbyaggregatingthemostimportant indicatedskeletonnodes.Theauthorsexaminetheskeletonnetworkcharacteristicsanddifferent spatialinformationusingtheoriginalnetworksasabenchmark.Theresultsshowthattheskeleton networkscanpreservethetopologicalandspatialinformationsimilartotheoriginalnetworks whilereducingtheirsizeandcomplexity. KEyWoRDS Backbone Extraction, Complex Network, Geographical Information, Network Summarization, Public Bicycle, Spatial Information, Topology Potential, Transportation","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":"61 1","pages":"146-167"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Skeleton Network Extraction and Analysis on Bicycle Sharing Networks\",\"authors\":\"Kanokwan Malang, Shuliang Wang, Yuanyuan Lv, Aniwat Phaphuangwittayakul\",\"doi\":\"10.4018/ijdwm.2020070108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skeletonnetworkextractionhasbeenadoptedunevenlyintransportationnetworkswhosenodes are always represented as spatial units. In this article, the TPks skeleton network extraction methodisproposedandappliedtobicyclesharingnetworks.Themethodaimstoreducethe networksizewhilepreservingkeytopologiesandspatialfeatures.Theauthorsquantifiedthe importanceofnodesbyanimprovedtopologypotentialalgorithm.Thespatialclusteringallows todetecthightrafficconcentrationsandallocate thenodesofeachclusteraccordingto their spatialdistribution.Then,theskeletonnetworkisconstructedbyaggregatingthemostimportant indicatedskeletonnodes.Theauthorsexaminetheskeletonnetworkcharacteristicsanddifferent spatialinformationusingtheoriginalnetworksasabenchmark.Theresultsshowthattheskeleton networkscanpreservethetopologicalandspatialinformationsimilartotheoriginalnetworks whilereducingtheirsizeandcomplexity. KEyWoRDS Backbone Extraction, Complex Network, Geographical Information, Network Summarization, Public Bicycle, Spatial Information, Topology Potential, Transportation\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":\"61 1\",\"pages\":\"146-167\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.2020070108\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.2020070108","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

摘要

Skeletonnetworkextractionhasbeenadoptedunevenlyintransportationnetworkswhosenodes它们总是被表示为空间单位。在这篇文章中,thetpks骷髅网络提取methodisproposedandappliedtobicyclesharingnetworks。Themethodaimstoreducethe networksizewhilepreservingkeytopologiesandspatialfeatures。Theauthorsquantifiedthe importanceofnodesbyanimprovedtopologypotentialalgorithm。Thespatialclusteringallows todetecthightrafficconcentrationsandallocate thenodesofeachclusteraccordingto their > spatialdistribution。Then,theskeletonnetworkisconstructedbyaggregatingthemostimportant indicatedskeletonnodes。Theauthorsexaminetheskeletonnetworkcharacteristicsanddifferent spatialinformationusingtheoriginalnetworksasabenchmark。Theresultsshowthattheskeleton networkscanpreservethetopologicalandspatialinformationsimilartotheoriginalnetworks whilereducingtheirsizeandcomplexity。关键词主干提取,复杂网络,地理信息,网络汇总,公共自行车,空间信息,拓扑势能,交通
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skeleton Network Extraction and Analysis on Bicycle Sharing Networks
Skeletonnetworkextractionhasbeenadoptedunevenlyintransportationnetworkswhosenodes are always represented as spatial units. In this article, the TPks skeleton network extraction methodisproposedandappliedtobicyclesharingnetworks.Themethodaimstoreducethe networksizewhilepreservingkeytopologiesandspatialfeatures.Theauthorsquantifiedthe importanceofnodesbyanimprovedtopologypotentialalgorithm.Thespatialclusteringallows todetecthightrafficconcentrationsandallocate thenodesofeachclusteraccordingto their spatialdistribution.Then,theskeletonnetworkisconstructedbyaggregatingthemostimportant indicatedskeletonnodes.Theauthorsexaminetheskeletonnetworkcharacteristicsanddifferent spatialinformationusingtheoriginalnetworksasabenchmark.Theresultsshowthattheskeleton networkscanpreservethetopologicalandspatialinformationsimilartotheoriginalnetworks whilereducingtheirsizeandcomplexity. KEyWoRDS Backbone Extraction, Complex Network, Geographical Information, Network Summarization, Public Bicycle, Spatial Information, Topology Potential, Transportation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信