{"title":"计算机检验数学:奇阶定理的形式化证明","authors":"A. Mahboubi","doi":"10.1145/2603088.2603090","DOIUrl":null,"url":null,"abstract":"The Odd Order Theorem is a landmark result in finite group theory, due to W. Feit and J. G. Thompson [1], which states that every finite group of odd order is solvable. It is famous for its crucial role in the classification of finite simple groups, for the novel methods introduced by its original proof but also for the striking contrast between the simplicity of its statement and the unusual length and complexity of its proof. After a six year collaborative effort, we managed to formalize and machine-check a complete proof of this theorem [2] using the Coq proof assistant [3]. The resulting collection of libraries of formalized mathematics covers a wide variety of topics, mostly in algebra, as this proof relies on a sophisticated combination of local analysis and character theory. In this tutorial we comment on the role played by the different features of the proof assistant, from the meta-theory of its underlying logic to the implementation of its various components. We will also discuss some issues raised by the translation of mathematical textbooks into formal libraries and the perspectives it opens on the use of a computer to do mathematics.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer-checked mathematics: a formal proof of the odd order theorem\",\"authors\":\"A. Mahboubi\",\"doi\":\"10.1145/2603088.2603090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Odd Order Theorem is a landmark result in finite group theory, due to W. Feit and J. G. Thompson [1], which states that every finite group of odd order is solvable. It is famous for its crucial role in the classification of finite simple groups, for the novel methods introduced by its original proof but also for the striking contrast between the simplicity of its statement and the unusual length and complexity of its proof. After a six year collaborative effort, we managed to formalize and machine-check a complete proof of this theorem [2] using the Coq proof assistant [3]. The resulting collection of libraries of formalized mathematics covers a wide variety of topics, mostly in algebra, as this proof relies on a sophisticated combination of local analysis and character theory. In this tutorial we comment on the role played by the different features of the proof assistant, from the meta-theory of its underlying logic to the implementation of its various components. We will also discuss some issues raised by the translation of mathematical textbooks into formal libraries and the perspectives it opens on the use of a computer to do mathematics.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
奇阶定理是有限群论中具有里程碑意义的结果,由W. Feit和J. G. Thompson[1]提出,它指出了每一个奇阶有限群都是可解的。它的著名之处在于它在有限简单群的分类中所起的关键作用,在于它最初的证明所引入的新方法,而且还在于它的陈述的简单性与它的证明的不同寻常的长度和复杂性之间的鲜明对比。经过六年的合作努力,我们成功地使用Coq证明助手[3]形式化并机器检查了该定理的完整证明[2]。由此产生的形式化数学库集合涵盖了各种各样的主题,主要是代数,因为这种证明依赖于局部分析和特征理论的复杂组合。在本教程中,我们将评论证明助手的不同特性所扮演的角色,从其底层逻辑的元理论到其各种组件的实现。我们还将讨论将数学教科书翻译成正式的图书馆所引起的一些问题,以及它对使用计算机做数学打开的前景。
Computer-checked mathematics: a formal proof of the odd order theorem
The Odd Order Theorem is a landmark result in finite group theory, due to W. Feit and J. G. Thompson [1], which states that every finite group of odd order is solvable. It is famous for its crucial role in the classification of finite simple groups, for the novel methods introduced by its original proof but also for the striking contrast between the simplicity of its statement and the unusual length and complexity of its proof. After a six year collaborative effort, we managed to formalize and machine-check a complete proof of this theorem [2] using the Coq proof assistant [3]. The resulting collection of libraries of formalized mathematics covers a wide variety of topics, mostly in algebra, as this proof relies on a sophisticated combination of local analysis and character theory. In this tutorial we comment on the role played by the different features of the proof assistant, from the meta-theory of its underlying logic to the implementation of its various components. We will also discuss some issues raised by the translation of mathematical textbooks into formal libraries and the perspectives it opens on the use of a computer to do mathematics.