球面随机特征函数高频几何特性的数值研究

High Frequency Pub Date : 2019-11-12 DOI:10.1002/hf2.10044
Yabebal Fantaye, Valentina Cammarota, Domenico Marinucci, Anna Paola Todino
{"title":"球面随机特征函数高频几何特性的数值研究","authors":"Yabebal Fantaye,&nbsp;Valentina Cammarota,&nbsp;Domenico Marinucci,&nbsp;Anna Paola Todino","doi":"10.1002/hf2.10044","DOIUrl":null,"url":null,"abstract":"<p>A lot of attention has been drawn over the last few years by the investigation of the geometry of spherical random eigenfunctions (random spherical harmonics) in the high-frequency regime, that is, for diverging eigenvalues. In this paper, we present a review of these results and we collect for the first time a comprehensive numerical investigation, focussing on particular on the behavior of Lipschitz-Killing curvatures/Minkowski functionals (i.e., the area, the boundary length, and the Euler-Poincaré characteristic of excursion sets) and on critical points. We show in particular that very accurate analytic predictions exist for their expected values and variances, for the correlation among these functionals, and for the cancellation that occurs for some specific thresholds (the variances becoming an order of magnitude smaller—the so-called Berry's cancellation phenomenon). Most of these functionals can be used for important statistical applications, for instance, in connection to the analysis of cosmic microwave background data.</p>","PeriodicalId":100604,"journal":{"name":"High Frequency","volume":"2 3-4","pages":"184-201"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hf2.10044","citationCount":"2","resultStr":"{\"title\":\"A numerical investigation on the high-frequency geometry of spherical random eigenfunctions\",\"authors\":\"Yabebal Fantaye,&nbsp;Valentina Cammarota,&nbsp;Domenico Marinucci,&nbsp;Anna Paola Todino\",\"doi\":\"10.1002/hf2.10044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A lot of attention has been drawn over the last few years by the investigation of the geometry of spherical random eigenfunctions (random spherical harmonics) in the high-frequency regime, that is, for diverging eigenvalues. In this paper, we present a review of these results and we collect for the first time a comprehensive numerical investigation, focussing on particular on the behavior of Lipschitz-Killing curvatures/Minkowski functionals (i.e., the area, the boundary length, and the Euler-Poincaré characteristic of excursion sets) and on critical points. We show in particular that very accurate analytic predictions exist for their expected values and variances, for the correlation among these functionals, and for the cancellation that occurs for some specific thresholds (the variances becoming an order of magnitude smaller—the so-called Berry's cancellation phenomenon). Most of these functionals can be used for important statistical applications, for instance, in connection to the analysis of cosmic microwave background data.</p>\",\"PeriodicalId\":100604,\"journal\":{\"name\":\"High Frequency\",\"volume\":\"2 3-4\",\"pages\":\"184-201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/hf2.10044\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Frequency\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Frequency","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的几年中,对高频区域(即发散特征值)的球面随机特征函数(随机球面谐波)的几何研究引起了人们的广泛关注。在本文中,我们对这些结果进行了回顾,并首次收集了一个全面的数值研究,特别关注Lipschitz-Killing曲率/Minkowski泛函的行为(即,偏移集的面积,边界长度和euler - poincar特征)和临界点。我们特别指出,对于它们的期望值和方差,对于这些函数之间的相关性,以及对于某些特定阈值发生的消去(方差变小一个数量级-所谓的贝里消去现象),存在非常准确的分析预测。这些功能中的大多数可用于重要的统计应用,例如,与宇宙微波背景数据的分析有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A numerical investigation on the high-frequency geometry of spherical random eigenfunctions

A numerical investigation on the high-frequency geometry of spherical random eigenfunctions

A lot of attention has been drawn over the last few years by the investigation of the geometry of spherical random eigenfunctions (random spherical harmonics) in the high-frequency regime, that is, for diverging eigenvalues. In this paper, we present a review of these results and we collect for the first time a comprehensive numerical investigation, focussing on particular on the behavior of Lipschitz-Killing curvatures/Minkowski functionals (i.e., the area, the boundary length, and the Euler-Poincaré characteristic of excursion sets) and on critical points. We show in particular that very accurate analytic predictions exist for their expected values and variances, for the correlation among these functionals, and for the cancellation that occurs for some specific thresholds (the variances becoming an order of magnitude smaller—the so-called Berry's cancellation phenomenon). Most of these functionals can be used for important statistical applications, for instance, in connection to the analysis of cosmic microwave background data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信