利用FFT降低有限长度MMSE均衡的复杂度

Michael Ibrahim
{"title":"利用FFT降低有限长度MMSE均衡的复杂度","authors":"Michael Ibrahim","doi":"10.1109/NRSC49500.2020.9235121","DOIUrl":null,"url":null,"abstract":"In this paper, the task of performing finite-length minimum mean square error (MMSE) equalization is considered for single carrier communication systems. A detailed mathematical derivation of the finite-length MMSE equalizer is presented where the MMSE equalizer coefficients are described using linear convolution instead of the matrix form representation, which is commonly found in literature. The linear convolution is then transformed into circular convolution by performing frequency-domain sampling while avoiding time-domain aliasing. The computation of the circular convolution naturally lends itself to employing FFT and IFFT operations, which leads to a significant complexity reduction compared to the traditional approaches of computing the MMSE equalizer coefficients using matrix inversion.","PeriodicalId":6778,"journal":{"name":"2020 37th National Radio Science Conference (NRSC)","volume":"26 1","pages":"137-144"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity Reduction of Finite-Length MMSE Equalization Using FFT\",\"authors\":\"Michael Ibrahim\",\"doi\":\"10.1109/NRSC49500.2020.9235121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the task of performing finite-length minimum mean square error (MMSE) equalization is considered for single carrier communication systems. A detailed mathematical derivation of the finite-length MMSE equalizer is presented where the MMSE equalizer coefficients are described using linear convolution instead of the matrix form representation, which is commonly found in literature. The linear convolution is then transformed into circular convolution by performing frequency-domain sampling while avoiding time-domain aliasing. The computation of the circular convolution naturally lends itself to employing FFT and IFFT operations, which leads to a significant complexity reduction compared to the traditional approaches of computing the MMSE equalizer coefficients using matrix inversion.\",\"PeriodicalId\":6778,\"journal\":{\"name\":\"2020 37th National Radio Science Conference (NRSC)\",\"volume\":\"26 1\",\"pages\":\"137-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 37th National Radio Science Conference (NRSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC49500.2020.9235121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 37th National Radio Science Conference (NRSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC49500.2020.9235121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了单载波通信系统的有限长度最小均方误差均衡问题。给出了有限长度MMSE均衡器的详细数学推导,其中MMSE均衡器系数使用线性卷积来描述,而不是在文献中常见的矩阵形式表示。然后通过频域采样将线性卷积变换为圆卷积,同时避免时域混叠。圆卷积的计算自然适合于使用FFT和IFFT操作,与使用矩阵反演计算MMSE均衡器系数的传统方法相比,这大大降低了复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity Reduction of Finite-Length MMSE Equalization Using FFT
In this paper, the task of performing finite-length minimum mean square error (MMSE) equalization is considered for single carrier communication systems. A detailed mathematical derivation of the finite-length MMSE equalizer is presented where the MMSE equalizer coefficients are described using linear convolution instead of the matrix form representation, which is commonly found in literature. The linear convolution is then transformed into circular convolution by performing frequency-domain sampling while avoiding time-domain aliasing. The computation of the circular convolution naturally lends itself to employing FFT and IFFT operations, which leads to a significant complexity reduction compared to the traditional approaches of computing the MMSE equalizer coefficients using matrix inversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信