用欧几里得距离变换识别蛋白质袋和空腔

Sebastian Daberdaku
{"title":"用欧几里得距离变换识别蛋白质袋和空腔","authors":"Sebastian Daberdaku","doi":"10.7287/peerj.preprints.27314v1","DOIUrl":null,"url":null,"abstract":"Protein pockets and cavities usually coincide with the active sites of biological processes, and their identification is significant since it constitutes an important step for structure-based drug design and protein-ligand docking applications. This research presents PoCavEDT, an automated purely geometric technique for the identification of binding pockets and occluded cavities in proteins based on the 3D Euclidean Distance Transform. Candidate protein pocket regions are identified between two Solvent-Excluded surfaces generated with the Euclidean Distance Transform using different probe spheres, which depend on the size of the binding ligand. The application of simple, yet effective geometrical heuristics ensures that the proposed method obtains very good ligand binding site prediction results. The method was applied to a representative set of protein-ligand complexes and their corresponding unbound protein structures to evaluate its ligand binding site prediction capabilities. Its performance was compared to the results achieved with several purely geometric pocket and cavity prediction methods, namely SURFNET, PASS, CAST, LIGSITE, LIGSITECS, PocketPicker and POCASA. Success rates PoCavEDT were comparable to those of POCASA and outperformed the other software.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"13 1","pages":"e27314"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of protein pockets and cavities by Euclidean Distance Transform\",\"authors\":\"Sebastian Daberdaku\",\"doi\":\"10.7287/peerj.preprints.27314v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein pockets and cavities usually coincide with the active sites of biological processes, and their identification is significant since it constitutes an important step for structure-based drug design and protein-ligand docking applications. This research presents PoCavEDT, an automated purely geometric technique for the identification of binding pockets and occluded cavities in proteins based on the 3D Euclidean Distance Transform. Candidate protein pocket regions are identified between two Solvent-Excluded surfaces generated with the Euclidean Distance Transform using different probe spheres, which depend on the size of the binding ligand. The application of simple, yet effective geometrical heuristics ensures that the proposed method obtains very good ligand binding site prediction results. The method was applied to a representative set of protein-ligand complexes and their corresponding unbound protein structures to evaluate its ligand binding site prediction capabilities. Its performance was compared to the results achieved with several purely geometric pocket and cavity prediction methods, namely SURFNET, PASS, CAST, LIGSITE, LIGSITECS, PocketPicker and POCASA. Success rates PoCavEDT were comparable to those of POCASA and outperformed the other software.\",\"PeriodicalId\":93040,\"journal\":{\"name\":\"PeerJ preprints\",\"volume\":\"13 1\",\"pages\":\"e27314\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ preprints\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7287/peerj.preprints.27314v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/peerj.preprints.27314v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

蛋白质口袋和空腔通常与生物过程的活性位点重合,它们的识别是重要的,因为它是基于结构的药物设计和蛋白质配体对接应用的重要步骤。本研究提出了PoCavEDT,一种基于三维欧几里得距离变换的自动化纯几何技术,用于识别蛋白质中的结合口袋和闭塞腔。候选的蛋白质口袋区域在两个由欧几里得距离变换产生的溶剂排除表面之间被识别,使用不同的探针球,这取决于结合配体的大小。采用简单而有效的几何启发式方法,保证了所提出的方法能获得很好的配体结合位点预测结果。将该方法应用于一组具有代表性的蛋白质-配体复合物及其相应的未结合蛋白质结构,以评估其配体结合位点预测能力。将其性能与几种纯几何袋腔预测方法(SURFNET、PASS、CAST、LIGSITE、LIGSITECS、PocketPicker和POCASA)的结果进行了比较。PoCavEDT的成功率与POCASA相当,优于其他软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of protein pockets and cavities by Euclidean Distance Transform
Protein pockets and cavities usually coincide with the active sites of biological processes, and their identification is significant since it constitutes an important step for structure-based drug design and protein-ligand docking applications. This research presents PoCavEDT, an automated purely geometric technique for the identification of binding pockets and occluded cavities in proteins based on the 3D Euclidean Distance Transform. Candidate protein pocket regions are identified between two Solvent-Excluded surfaces generated with the Euclidean Distance Transform using different probe spheres, which depend on the size of the binding ligand. The application of simple, yet effective geometrical heuristics ensures that the proposed method obtains very good ligand binding site prediction results. The method was applied to a representative set of protein-ligand complexes and their corresponding unbound protein structures to evaluate its ligand binding site prediction capabilities. Its performance was compared to the results achieved with several purely geometric pocket and cavity prediction methods, namely SURFNET, PASS, CAST, LIGSITE, LIGSITECS, PocketPicker and POCASA. Success rates PoCavEDT were comparable to those of POCASA and outperformed the other software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信