隐式隐私保护:基于数据生成的框架

Qing Yang, Cheng Wang, Teng Hu, Xue Chen, Changjun Jiang
{"title":"隐式隐私保护:基于数据生成的框架","authors":"Qing Yang, Cheng Wang, Teng Hu, Xue Chen, Changjun Jiang","doi":"10.1051/sands/2022008","DOIUrl":null,"url":null,"abstract":"This paper addresses a special and imperceptible class of privacy, called implicit privacy. In contrast to traditional (explicit) privacy, implicit privacy has two essential properties: (1) It is not initially defined as a privacy attribute; (2) it is strongly associated with privacy attributes. In other words, attackers could utilize it to infer privacy attributes with a certain probability, indirectly resulting in the disclosure of private information. To deal with the implicit privacy disclosure problem, we give a measurable definition of implicit privacy, and propose an ex-ante implicit privacy-preserving framework based on data generation, called IMPOSTER. The framework consists of an implicit privacy detection module and an implicit privacy protection module. The former uses normalized mutual information to detect implicit privacy attributes that are strongly related to traditional privacy attributes. Based on the idea of data generation, the latter equips the Generative Adversarial Network (GAN) framework with an additional discriminator, which is used to eliminate the association between traditional privacy attributes and implicit ones. We elaborate a theoretical analysis for the convergence of the framework. Experiments demonstrate that with the learned generator, IMPOSTER can alleviate the disclosure of implicit privacy while maintaining good data utility.","PeriodicalId":79641,"journal":{"name":"Hospital security and safety management","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implicit privacy preservation: a framework based on data generation\",\"authors\":\"Qing Yang, Cheng Wang, Teng Hu, Xue Chen, Changjun Jiang\",\"doi\":\"10.1051/sands/2022008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses a special and imperceptible class of privacy, called implicit privacy. In contrast to traditional (explicit) privacy, implicit privacy has two essential properties: (1) It is not initially defined as a privacy attribute; (2) it is strongly associated with privacy attributes. In other words, attackers could utilize it to infer privacy attributes with a certain probability, indirectly resulting in the disclosure of private information. To deal with the implicit privacy disclosure problem, we give a measurable definition of implicit privacy, and propose an ex-ante implicit privacy-preserving framework based on data generation, called IMPOSTER. The framework consists of an implicit privacy detection module and an implicit privacy protection module. The former uses normalized mutual information to detect implicit privacy attributes that are strongly related to traditional privacy attributes. Based on the idea of data generation, the latter equips the Generative Adversarial Network (GAN) framework with an additional discriminator, which is used to eliminate the association between traditional privacy attributes and implicit ones. We elaborate a theoretical analysis for the convergence of the framework. Experiments demonstrate that with the learned generator, IMPOSTER can alleviate the disclosure of implicit privacy while maintaining good data utility.\",\"PeriodicalId\":79641,\"journal\":{\"name\":\"Hospital security and safety management\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hospital security and safety management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/sands/2022008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hospital security and safety management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/sands/2022008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了一种特殊的、不易察觉的隐私,称为隐性隐私。与传统的(显式)隐私相比,隐式隐私具有两个基本属性:(1)它最初不被定义为隐私属性;(2)与隐私属性强关联。也就是说,攻击者可以利用它以一定的概率推断出隐私属性,间接导致隐私信息的泄露。为了解决隐式隐私泄露问题,我们给出了隐式隐私的可测量定义,并提出了一种基于数据生成的事前隐式隐私保护框架——IMPOSTER。该框架由隐式隐私检测模块和隐式隐私保护模块组成。前者使用规范化互信息检测与传统隐私属性密切相关的隐式隐私属性。基于数据生成的思想,后者为生成对抗网络(GAN)框架提供了一个额外的鉴别器,用于消除传统隐私属性与隐式隐私属性之间的关联。对该框架的收敛性进行了理论分析。实验表明,利用学习生成器,IMPOSTER可以在保持良好数据效用的同时减轻隐式隐私的泄露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implicit privacy preservation: a framework based on data generation
This paper addresses a special and imperceptible class of privacy, called implicit privacy. In contrast to traditional (explicit) privacy, implicit privacy has two essential properties: (1) It is not initially defined as a privacy attribute; (2) it is strongly associated with privacy attributes. In other words, attackers could utilize it to infer privacy attributes with a certain probability, indirectly resulting in the disclosure of private information. To deal with the implicit privacy disclosure problem, we give a measurable definition of implicit privacy, and propose an ex-ante implicit privacy-preserving framework based on data generation, called IMPOSTER. The framework consists of an implicit privacy detection module and an implicit privacy protection module. The former uses normalized mutual information to detect implicit privacy attributes that are strongly related to traditional privacy attributes. Based on the idea of data generation, the latter equips the Generative Adversarial Network (GAN) framework with an additional discriminator, which is used to eliminate the association between traditional privacy attributes and implicit ones. We elaborate a theoretical analysis for the convergence of the framework. Experiments demonstrate that with the learned generator, IMPOSTER can alleviate the disclosure of implicit privacy while maintaining good data utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信