共轭欧拉函数渐近公式中余项的volterra积分方程

IF 0.2 Q4 MATHEMATICS
Hidetomo Iwata
{"title":"共轭欧拉函数渐近公式中余项的volterra积分方程","authors":"Hidetomo Iwata","doi":"10.17654/0972555522017","DOIUrl":null,"url":null,"abstract":". J.Kaczorowski and K.Wiertelak considered the integral equation for remainder terms in the asymptotic formula for the Euler totient function and for the twisted Euler ϕ -function. In 2013, J.Kaczorowski defined the associated Euler totient function which extends the above two functions and proved an asymptotic formula for it. In the present paper, first, we consider the Volterra integral equation for the remainder term in the asymptotic formula for the associated Euler totient function. Secondly, we solve the Volterra integral equation and we split the error term in the asymptotic formula for the associated Euler totient function into two sum-mands called arithmetic and analytic part respectively.","PeriodicalId":43248,"journal":{"name":"JP Journal of Algebra Number Theory and Applications","volume":"10 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON THE VOLTERRA INTEGRAL EQUATION FOR THE REMAINDER TERM IN THE ASYMPTOTIC FORMULA ON THE ASSOCIATED EULER TOTIENT FUNCTION\",\"authors\":\"Hidetomo Iwata\",\"doi\":\"10.17654/0972555522017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". J.Kaczorowski and K.Wiertelak considered the integral equation for remainder terms in the asymptotic formula for the Euler totient function and for the twisted Euler ϕ -function. In 2013, J.Kaczorowski defined the associated Euler totient function which extends the above two functions and proved an asymptotic formula for it. In the present paper, first, we consider the Volterra integral equation for the remainder term in the asymptotic formula for the associated Euler totient function. Secondly, we solve the Volterra integral equation and we split the error term in the asymptotic formula for the associated Euler totient function into two sum-mands called arithmetic and analytic part respectively.\",\"PeriodicalId\":43248,\"journal\":{\"name\":\"JP Journal of Algebra Number Theory and Applications\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JP Journal of Algebra Number Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0972555522017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JP Journal of Algebra Number Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0972555522017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

。J.Kaczorowski和K.Wiertelak考虑了欧拉φ函数和扭曲欧拉φ函数渐近公式中余项的积分方程。2013年,J.Kaczorowski定义了将上述两个函数扩展的关联欧拉泛函,并证明了其渐近公式。在本文中,我们首先考虑了伴随欧拉函数渐近公式中剩余项的Volterra积分方程。其次,对Volterra积分方程进行求解,并将相关Euler totient函数渐近公式中的误差项分别拆分为算术部分和解析部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE VOLTERRA INTEGRAL EQUATION FOR THE REMAINDER TERM IN THE ASYMPTOTIC FORMULA ON THE ASSOCIATED EULER TOTIENT FUNCTION
. J.Kaczorowski and K.Wiertelak considered the integral equation for remainder terms in the asymptotic formula for the Euler totient function and for the twisted Euler ϕ -function. In 2013, J.Kaczorowski defined the associated Euler totient function which extends the above two functions and proved an asymptotic formula for it. In the present paper, first, we consider the Volterra integral equation for the remainder term in the asymptotic formula for the associated Euler totient function. Secondly, we solve the Volterra integral equation and we split the error term in the asymptotic formula for the associated Euler totient function into two sum-mands called arithmetic and analytic part respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
32
期刊介绍: The JP Journal of Algebra, Number Theory and Applications is a peer-reviewed international journal. Original research papers theoretical, computational or applied, in nature, in any branch of Algebra and Number Theory are considered by the JPANTA. Together with the core topics in these fields along with their interplay, the journal promotes contributions in Diophantine equations, Representation theory, and Cryptography. Realising the need of wide range of information for any emerging area of potential research, the journal encourages the submission of related survey articles as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信