多动态电源电压设计的高质量全局路由

Wen-Hao Liu, Yih-Lang Li, Kai-Yuan Chao
{"title":"多动态电源电压设计的高质量全局路由","authors":"Wen-Hao Liu, Yih-Lang Li, Kai-Yuan Chao","doi":"10.5555/2132325.2132387","DOIUrl":null,"url":null,"abstract":"Multiple dynamic supply voltage (MDSV) provides an effective way to reduce dynamic power and is widely used in high-end or low-power designs. The challenge of routing MDSV designs is that the net in MDSV designs needs to be planned carefully to avoid electrical problems or functional failure as a long interconnect path pass through the shutdown power domains. As the first work to address the MDSV global routing problem, power domain-aware routing (PDR) problem is defined and the point-to-point PDR algorithm is also presented herein with look-ahead path selection method and look-up table acceleration approach. For multi-pin net routings, a novel constant-time table-lookup mechanism by invoking four enhanced monotonic routings to fast compute the least-cost monotonic path from every node to the target sub-tree is presented to speed up the query about routing cost (including driven-length slack) to target during multi-source multi-target PDR. Experimental results confirm that the proposed MDSV-based global router can efficiently identify legally optimized routing results for MDSV designs, and can effectively reduce overflow, wire length, inserted level shifters and runtime.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"75 1","pages":"263-269"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"High-quality global routing for multiple dynamic supply voltage designs\",\"authors\":\"Wen-Hao Liu, Yih-Lang Li, Kai-Yuan Chao\",\"doi\":\"10.5555/2132325.2132387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple dynamic supply voltage (MDSV) provides an effective way to reduce dynamic power and is widely used in high-end or low-power designs. The challenge of routing MDSV designs is that the net in MDSV designs needs to be planned carefully to avoid electrical problems or functional failure as a long interconnect path pass through the shutdown power domains. As the first work to address the MDSV global routing problem, power domain-aware routing (PDR) problem is defined and the point-to-point PDR algorithm is also presented herein with look-ahead path selection method and look-up table acceleration approach. For multi-pin net routings, a novel constant-time table-lookup mechanism by invoking four enhanced monotonic routings to fast compute the least-cost monotonic path from every node to the target sub-tree is presented to speed up the query about routing cost (including driven-length slack) to target during multi-source multi-target PDR. Experimental results confirm that the proposed MDSV-based global router can efficiently identify legally optimized routing results for MDSV designs, and can effectively reduce overflow, wire length, inserted level shifters and runtime.\",\"PeriodicalId\":6357,\"journal\":{\"name\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"75 1\",\"pages\":\"263-269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2132325.2132387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2132325.2132387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

多动态电源电压(MDSV)提供了一种有效的降低动态功率的方法,广泛应用于高端或低功耗设计中。路由MDSV设计的挑战在于,MDSV设计中的网络需要仔细规划,以避免电气问题或功能故障,因为长互连路径通过关闭电源域。作为解决MDSV全局路由问题的第一步,定义了功率域感知路由(PDR)问题,并采用前瞻性路径选择方法和查找表加速方法提出了点对点PDR算法。针对多引脚网络路由,提出了一种新的恒时查找表机制,通过调用4条增强的单调路由,快速计算出从每个节点到目标子树的最小开销单调路径,从而加快了多源多目标PDR中到目标路由开销(包括驱动长度松弛)的查询速度。实验结果表明,所提出的基于MDSV的全局路由器能够有效地识别合法优化的MDSV路由结果,并能有效地减少溢出、导线长度、插入电平移位器和运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-quality global routing for multiple dynamic supply voltage designs
Multiple dynamic supply voltage (MDSV) provides an effective way to reduce dynamic power and is widely used in high-end or low-power designs. The challenge of routing MDSV designs is that the net in MDSV designs needs to be planned carefully to avoid electrical problems or functional failure as a long interconnect path pass through the shutdown power domains. As the first work to address the MDSV global routing problem, power domain-aware routing (PDR) problem is defined and the point-to-point PDR algorithm is also presented herein with look-ahead path selection method and look-up table acceleration approach. For multi-pin net routings, a novel constant-time table-lookup mechanism by invoking four enhanced monotonic routings to fast compute the least-cost monotonic path from every node to the target sub-tree is presented to speed up the query about routing cost (including driven-length slack) to target during multi-source multi-target PDR. Experimental results confirm that the proposed MDSV-based global router can efficiently identify legally optimized routing results for MDSV designs, and can effectively reduce overflow, wire length, inserted level shifters and runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信