结构断裂时间序列的自适应群套索问题

Simon Behrendt, Karsten Schweikert
{"title":"结构断裂时间序列的自适应群套索问题","authors":"Simon Behrendt, Karsten Schweikert","doi":"10.2139/ssrn.3486104","DOIUrl":null,"url":null,"abstract":"Abstract Considering structural break autoregressive (SBAR) processes and following recent literature, the problem of estimating the unknown number of change-points is cast as a model selection problem. The adaptive group Lasso is used to select the number of change-points for which parameter estimation consistency, model selection consistency, and asymptotic normality are proven. It is shown in simulation experiments that adaptive group Lasso performs comparably to a state-of-the-art two-step group Lasso procedure with backward elimination and other leading-edge approaches. Moreover, comparing the forecasting performance of both group Lasso procedures in an empirical application to realized variance dynamics, adaptive group Lasso is found to date change-points with equal accuracy. Thus, in practice, adaptive group Lasso can provide an alternative way to consistently select change-points in related applications.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Note on Adaptive Group Lasso for Structural Break Time Series\",\"authors\":\"Simon Behrendt, Karsten Schweikert\",\"doi\":\"10.2139/ssrn.3486104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Considering structural break autoregressive (SBAR) processes and following recent literature, the problem of estimating the unknown number of change-points is cast as a model selection problem. The adaptive group Lasso is used to select the number of change-points for which parameter estimation consistency, model selection consistency, and asymptotic normality are proven. It is shown in simulation experiments that adaptive group Lasso performs comparably to a state-of-the-art two-step group Lasso procedure with backward elimination and other leading-edge approaches. Moreover, comparing the forecasting performance of both group Lasso procedures in an empirical application to realized variance dynamics, adaptive group Lasso is found to date change-points with equal accuracy. Thus, in practice, adaptive group Lasso can provide an alternative way to consistently select change-points in related applications.\",\"PeriodicalId\":11465,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3486104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3486104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

摘要考虑到结构断裂自回归(SBAR)过程,并根据最近的文献,将未知变点数量的估计问题转化为模型选择问题。采用自适应群Lasso来选择证明参数估计一致性、模型选择一致性和渐近正态性的变点个数。仿真实验表明,自适应组Lasso的性能与最先进的两步组Lasso程序具有向后消除和其他前沿方法相当。此外,在实现方差动态的实证应用中,比较了两组Lasso方法的预测性能,发现自适应组Lasso方法对变化点的预测精度相同。因此,在实践中,自适应组Lasso可以提供一种在相关应用程序中一致选择变更点的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Adaptive Group Lasso for Structural Break Time Series
Abstract Considering structural break autoregressive (SBAR) processes and following recent literature, the problem of estimating the unknown number of change-points is cast as a model selection problem. The adaptive group Lasso is used to select the number of change-points for which parameter estimation consistency, model selection consistency, and asymptotic normality are proven. It is shown in simulation experiments that adaptive group Lasso performs comparably to a state-of-the-art two-step group Lasso procedure with backward elimination and other leading-edge approaches. Moreover, comparing the forecasting performance of both group Lasso procedures in an empirical application to realized variance dynamics, adaptive group Lasso is found to date change-points with equal accuracy. Thus, in practice, adaptive group Lasso can provide an alternative way to consistently select change-points in related applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信