{"title":"结构断裂时间序列的自适应群套索问题","authors":"Simon Behrendt, Karsten Schweikert","doi":"10.2139/ssrn.3486104","DOIUrl":null,"url":null,"abstract":"Abstract Considering structural break autoregressive (SBAR) processes and following recent literature, the problem of estimating the unknown number of change-points is cast as a model selection problem. The adaptive group Lasso is used to select the number of change-points for which parameter estimation consistency, model selection consistency, and asymptotic normality are proven. It is shown in simulation experiments that adaptive group Lasso performs comparably to a state-of-the-art two-step group Lasso procedure with backward elimination and other leading-edge approaches. Moreover, comparing the forecasting performance of both group Lasso procedures in an empirical application to realized variance dynamics, adaptive group Lasso is found to date change-points with equal accuracy. Thus, in practice, adaptive group Lasso can provide an alternative way to consistently select change-points in related applications.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Note on Adaptive Group Lasso for Structural Break Time Series\",\"authors\":\"Simon Behrendt, Karsten Schweikert\",\"doi\":\"10.2139/ssrn.3486104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Considering structural break autoregressive (SBAR) processes and following recent literature, the problem of estimating the unknown number of change-points is cast as a model selection problem. The adaptive group Lasso is used to select the number of change-points for which parameter estimation consistency, model selection consistency, and asymptotic normality are proven. It is shown in simulation experiments that adaptive group Lasso performs comparably to a state-of-the-art two-step group Lasso procedure with backward elimination and other leading-edge approaches. Moreover, comparing the forecasting performance of both group Lasso procedures in an empirical application to realized variance dynamics, adaptive group Lasso is found to date change-points with equal accuracy. Thus, in practice, adaptive group Lasso can provide an alternative way to consistently select change-points in related applications.\",\"PeriodicalId\":11465,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3486104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3486104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Note on Adaptive Group Lasso for Structural Break Time Series
Abstract Considering structural break autoregressive (SBAR) processes and following recent literature, the problem of estimating the unknown number of change-points is cast as a model selection problem. The adaptive group Lasso is used to select the number of change-points for which parameter estimation consistency, model selection consistency, and asymptotic normality are proven. It is shown in simulation experiments that adaptive group Lasso performs comparably to a state-of-the-art two-step group Lasso procedure with backward elimination and other leading-edge approaches. Moreover, comparing the forecasting performance of both group Lasso procedures in an empirical application to realized variance dynamics, adaptive group Lasso is found to date change-points with equal accuracy. Thus, in practice, adaptive group Lasso can provide an alternative way to consistently select change-points in related applications.