用机器学习算法对多光谱图像中的不透水表面进行分类

M. Furuya, Danielle Elis Garcia Furuya, Lucas Prado Osco, A. Ramos
{"title":"用机器学习算法对多光谱图像中的不透水表面进行分类","authors":"M. Furuya, Danielle Elis Garcia Furuya, Lucas Prado Osco, A. Ramos","doi":"10.5747/ce.2021.v13.n3.e368","DOIUrl":null,"url":null,"abstract":"The urbanization process exposes the urban landscape to rapid and constant transformations. The change in land use and land cover patterns directly impacts the quality of life in cities. Therefore, monitoring the urban territorial composition becomes essential for urban management. To gain access to these data, studies have been applying remote sensing techniques combined with machine learning. Satellite images provide large-scale data with high temporal resolution, making it easier to detect changes in the landscape. Machine learning algorithms, on the other hand, provide classifications with greater accuracy compared to traditional methods. From this context and the available techniques, the study aims to evaluate the performance of the Support Vector Machine (SVM) algorithm in quantifying impervious areas in the urban perimeter of Presidente Prudente from a Planet image. The classification process was done using ArcGIS Pro software. The results demonstrate high performance for the SVM when applied in classification of impervious areas in urban territory. The accuracy of 94% shows that the method proposed in the work is useful as a tool for urban planning.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLASSIFICAÇÃO DE SUPERFÍCIES IMPERMEÁVEIS EM IMAGEM MULTIESPECTRAL COM ALGORITMO DE MACHINE LEARNING\",\"authors\":\"M. Furuya, Danielle Elis Garcia Furuya, Lucas Prado Osco, A. Ramos\",\"doi\":\"10.5747/ce.2021.v13.n3.e368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The urbanization process exposes the urban landscape to rapid and constant transformations. The change in land use and land cover patterns directly impacts the quality of life in cities. Therefore, monitoring the urban territorial composition becomes essential for urban management. To gain access to these data, studies have been applying remote sensing techniques combined with machine learning. Satellite images provide large-scale data with high temporal resolution, making it easier to detect changes in the landscape. Machine learning algorithms, on the other hand, provide classifications with greater accuracy compared to traditional methods. From this context and the available techniques, the study aims to evaluate the performance of the Support Vector Machine (SVM) algorithm in quantifying impervious areas in the urban perimeter of Presidente Prudente from a Planet image. The classification process was done using ArcGIS Pro software. The results demonstrate high performance for the SVM when applied in classification of impervious areas in urban territory. The accuracy of 94% shows that the method proposed in the work is useful as a tool for urban planning.\",\"PeriodicalId\":30414,\"journal\":{\"name\":\"Colloquium Exactarum\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Exactarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5747/ce.2021.v13.n3.e368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2021.v13.n3.e368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

城市化进程使城市景观面临着快速而持续的变化。土地利用和土地覆盖格局的变化直接影响城市的生活质量。因此,监测城市地域构成对城市管理至关重要。为了获得这些数据,研究一直在将遥感技术与机器学习相结合。卫星图像提供了高时间分辨率的大规模数据,使其更容易检测到景观的变化。另一方面,与传统方法相比,机器学习算法提供的分类精度更高。基于此背景和现有技术,本研究旨在评估支持向量机(SVM)算法在从行星图像中量化总统普吕登特城市周边不透水区域方面的性能。分类过程采用ArcGIS Pro软件完成。结果表明,支持向量机在城市不透水区域分类中具有良好的性能。94%的准确率表明,本文提出的方法作为城市规划的工具是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLASSIFICAÇÃO DE SUPERFÍCIES IMPERMEÁVEIS EM IMAGEM MULTIESPECTRAL COM ALGORITMO DE MACHINE LEARNING
The urbanization process exposes the urban landscape to rapid and constant transformations. The change in land use and land cover patterns directly impacts the quality of life in cities. Therefore, monitoring the urban territorial composition becomes essential for urban management. To gain access to these data, studies have been applying remote sensing techniques combined with machine learning. Satellite images provide large-scale data with high temporal resolution, making it easier to detect changes in the landscape. Machine learning algorithms, on the other hand, provide classifications with greater accuracy compared to traditional methods. From this context and the available techniques, the study aims to evaluate the performance of the Support Vector Machine (SVM) algorithm in quantifying impervious areas in the urban perimeter of Presidente Prudente from a Planet image. The classification process was done using ArcGIS Pro software. The results demonstrate high performance for the SVM when applied in classification of impervious areas in urban territory. The accuracy of 94% shows that the method proposed in the work is useful as a tool for urban planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信