一元权重多维点上的范围更新与范围和查询

Shangqi Lu, Yufei Tao
{"title":"一元权重多维点上的范围更新与范围和查询","authors":"Shangqi Lu, Yufei Tao","doi":"10.4230/LIPIcs.ISAAC.2022.57","DOIUrl":null,"url":null,"abstract":"Let P be a set of n points in R d where each point p ∈ P carries a weight drawn from a commutative monoid ( M , + , 0). Given a d -rectangle r upd (i.e., an orthogonal rectangle in R d ) and a value ∆ ∈ M , a range update adds ∆ to the weight of every point p ∈ P ∩ r upd ; given a d -rectangle r qry , a range sum query returns the total weight of the points in P ∩ r qry . The goal is to store P in a structure to support updates and queries with attractive performance guarantees. We describe a structure of ˜ O ( n ) space that handles an update in ˜ O ( T upd ) time and a query in ˜ O ( T qry ) time for arbitrary functions T upd ( n ) and T qry ( n ) satisfying T upd · T qry = n . The result holds for any fixed dimensionality d ≥ 2. Our query-update tradeoff is tight up to a polylog factor subject to the OMv-conjecture. 2012 ACM Subject Classification Theory of computation → Data structures design and analysis","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"19 1","pages":"102030"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights\",\"authors\":\"Shangqi Lu, Yufei Tao\",\"doi\":\"10.4230/LIPIcs.ISAAC.2022.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let P be a set of n points in R d where each point p ∈ P carries a weight drawn from a commutative monoid ( M , + , 0). Given a d -rectangle r upd (i.e., an orthogonal rectangle in R d ) and a value ∆ ∈ M , a range update adds ∆ to the weight of every point p ∈ P ∩ r upd ; given a d -rectangle r qry , a range sum query returns the total weight of the points in P ∩ r qry . The goal is to store P in a structure to support updates and queries with attractive performance guarantees. We describe a structure of ˜ O ( n ) space that handles an update in ˜ O ( T upd ) time and a query in ˜ O ( T qry ) time for arbitrary functions T upd ( n ) and T qry ( n ) satisfying T upd · T qry = n . The result holds for any fixed dimensionality d ≥ 2. Our query-update tradeoff is tight up to a polylog factor subject to the OMv-conjecture. 2012 ACM Subject Classification Theory of computation → Data structures design and analysis\",\"PeriodicalId\":11245,\"journal\":{\"name\":\"Discret. Comput. Geom.\",\"volume\":\"19 1\",\"pages\":\"102030\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Comput. Geom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ISAAC.2022.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ISAAC.2022.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设P是R d中n个点的集合,其中每个点P∈P都有一个从交换单形(M, +, 0)中得到的权值。给定一个d -矩形R upd(即R d中的一个正交矩形)和一个值∆∈M,范围更新将∆加到每个点P∈P∩R upd的权值上;给定一个矩形r查询,一个范围和查询返回P∩r查询中所有点的总权重。我们的目标是将P存储在一个结构中,以支持更新和查询,并提供有吸引力的性能保证。我们描述了一个~ O (n)空间结构,它处理满足T upd·T qry = n的任意函数T upd (n)和T qry (n)在~ O (T upd)时间内的更新和在~ O (T qry)时间内的查询。这个结果对任何固定维数d≥2都成立。我们的查询更新权衡严格到受omv猜想约束的多对数因子。2012 ACM学科分类:计算理论→数据结构设计与分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights
Let P be a set of n points in R d where each point p ∈ P carries a weight drawn from a commutative monoid ( M , + , 0). Given a d -rectangle r upd (i.e., an orthogonal rectangle in R d ) and a value ∆ ∈ M , a range update adds ∆ to the weight of every point p ∈ P ∩ r upd ; given a d -rectangle r qry , a range sum query returns the total weight of the points in P ∩ r qry . The goal is to store P in a structure to support updates and queries with attractive performance guarantees. We describe a structure of ˜ O ( n ) space that handles an update in ˜ O ( T upd ) time and a query in ˜ O ( T qry ) time for arbitrary functions T upd ( n ) and T qry ( n ) satisfying T upd · T qry = n . The result holds for any fixed dimensionality d ≥ 2. Our query-update tradeoff is tight up to a polylog factor subject to the OMv-conjecture. 2012 ACM Subject Classification Theory of computation → Data structures design and analysis
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信